Magnetic-storm geoelectric hazard maps and the induction of voltages on power-grids

Jeffrey J. Love, Anna Kelbert, E. Joshua Rigler, Benjamin S. Murphy USGS Geomagnetism Program

> Greg M. Lucas Laboratory for Atmospheric and Space Physics University of Colorado

USGS Geology, Geophysics, Geochemistry Science Center

Paul A. Bedrosian

U.S. Department of the Interior U.S. Geological Survey Space Weather Operations Research and Mitigation Working Group

Possible Future CONUS Geomagnetic Monitoring

CONUS MT Survey Completion

Executive Order 13865 (signed March 26, 2019):

"Within 4 years of the date of this order, the Secretary of the Interior shall complete a magnetotelluric survey of the contiguous United States to help critical infrastructure owners and operators conduct EMP vulnerability assessments."

FY20 Geomagnetism Program appropriation:

\$4,000,000 for Geomagnetism including \$1,726,000 for the magnetotelluric survey as well as funding to maintain operation of existing observatories.

FY21 Geomagnetism Program proposed appropriation:

Continue operating magnetic observatories, continue magnetotelluric survey, continue developing geoelectric hazard maps.

Map Satellite Draw Selection Box Asia Callity Quality Warning Release Status Project Min Period Max Period Min Lagend Data Quality Quality Warning Release Status Project Min Period Max Period Min Lagend Data Quality Quality Warning Release Status Project Min Period Max Period Min Lagend Max Lat Start Date Image: Callity Min Quality O to	Transfer Function Query Parameters			
ASIA ASIA	Map Satellite	Legend Data Quality Quality Warning Max Lat	Release Status Project Min Period Max Period	
Source Project All Period 1.0e-5 - 1.0e+5 Survey All Stite Name Stite Name Type All Remote Site Author Author Remote ID	ASIA ELROPE ASIA ASIA ASIA ASIA ASIA ASIA ASIA ASIA ASIA	Min Lon Max Lon E Min Lat N Site ID	End Date	
	Sourre Bacille Beeuin AMERICA Viellan Ceean Ceean Ceean Ceean Ceean Ceean	Project All Survey All Type All Author P	Period 1.0e-5 - 1.0e+5 Site Name Remote Site Remote ID	

The EMTF XML format and file conversion utilities are described by <u>Kelbert (2019</u>). Reading and writing of EMTF XML is supported by <u>EMTF FCU</u>. All data are oriented to geographic coordinates, but all historical files are also available in their original orientations. Please see the complete <u>change log</u> for database changes Data citations are provided for each survey; these should be referenced in publications.

Qu	Query Results: 5444 items found												
				14 <4 Pa	ge: 1 of 55	►> ►1 100 •							
	Site Name	Site ID \$	Latitude \$	Longitude \$	Project \$	Survey ¢	Start Time (UTC) \$	End Time (UTC) \$	Last modified (UTC)				
	Mazourka Canyon, CA, USA	CAT08	36.84	-118.09	USMTArray	SOCAL	2019-11-15 21:35:13	2019-12-05 16:51:02	2020-01-29 19:01:03				
	Soledad Canyon, CA, USA	CAX08	34.47	-118.10	USMTArray	SOCAL	2019-11-14 22:14:50	2019-12-04 16:47:10	2020-01-29 19:11:19				
	California City, CA, USA	CAW08	35.07	-118.00	USMTArray	SOCAL	2019-11-14 17:48:27	2019-12-04 20:11:28	2020-01-29 19:17:56				
0	Mt. Madonna, CA, USA	CAT03	37.02	-121.70	USMTArray	SOCAL	2019-11-08 22:45:44	2019-12-06 16:46:51	2020-01-29 19:20:10				

http://ds.iris.edu/spud/emtf

MT Impedance Archiving:

- ➤ mature
- format conversion software available
- maintained by USGS

MT Time Series Archiving:

- > archaic procedures
- new data format development
- new tools in development at USGS

http://ds.iris.edu/gmap/#network=_US-MT

Magnetic storms and induction hazards, Eos, Trans. AGU, 95(48), 445-446, doi10.1002/2014EO480001.

3D conductivity model of CONUS based on magnetotelluric data

Compilation of existing 3D electrical conductivity models in contiguous U.S. (CONUS) constrained by USArray MT and other MT and magnetometer data from near-surface to approx. 900 km. Improvements are work in progress. Note the 4 orders of magnitude variation.

Working with NOAA SWPC to develop of version of real-time geoelectric field map based on empirical impedances and/or 3D conductivity model.

Kelbert, A., Bedrosian, P. A., and Murphy, B. S., 2019, The first 3D conductivity model of the contiguous United States: Reflections on geologic structure and application to induction hazards, in Geomagnetically Induced Currents from the Sun to the Power Grid, edited by J. L. Gannon, Z. Xu, and A. Swidinski, Geophysical Monograph 244, pp. 127-151, American Geophysical Union, Washington, D.C., doi:10.1002/9781119434412.ch8.

National impedance mapping project

100-year maximum voltages on national power grid (1-min duration)

Lucas, G. M., Love, J. J., Kelbert, A., Bedrosian, P. A., and Rigler, E. J., 2020, 100-year geoelectric hazard analysis for the United States, Space Weather, 18(2), e2019SW002329, doi:10.1002/2019SW002329.