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SECTION 1

I NTROOUCT ION

Recently there has been a renewed interest in transmission-line

theory and its application to the internal interaction problems

involving electromagnetic pulse (EMP) excitation of aerospace systems.

One new development in this area has been the formulation of an

analysis procedure to study large interconnected networks of multi-

conductor transmission lines. This analysis, which is described in

refs. (1) and (2). and the resulting computer program (ref. 3), will

pemit not only simple branching of transmission lines within the

network, but also complicated loopt-- of lines. Thus, an arbitrarily

interconnected set of transnission ,r.es can be analyzed using this

approach.

The analysis of the transmission-line networks described in

refs. (1) and (2) is based on the r-etwork excitation being due to

lumped (or discrete) voltage and current sources located at a source

position somewhere along each transmission-line section (tube). While

this specification of sources may be useful for certain applications,

it is not particularly useful for EMP studies, where the transmission-

line network is excited by an .ncident, transient electromagnetic

field. In the EMP case, not only is the transmission-line excitation

distributed along the line, but the fundamental excitation quantities

are the incident electric and magnetic fields (r and 1), not the
current and voltage sources. Thus, it is necessary to modify the past
analysis to permit distributed field excitation of the transmission lines.

1. Baum, C.E., et al., "Numerical Results for Multiconductor Trans-
mission Line Networks," AFWL-TR-77-123, Air Force Weapons
Laboratory, Kirtland AFB, MM, November 1977.

2. Baum, C.E., T.K. Liu and F.M. Tesche, "On the General Analysis
of Multiconductor Transmission Line Networks," AFWL EMP
Interaction Note, to be published.

3. Tesrlo F.M., and T.K. Liu, "User Manual and Code Description for
QV7 A General Multiconduc',r Transmission Line Analysis Code,"
prP -ed for Air Force Weapons Laboratory, Contract F29601-78-C-0002,
Pt 1978.



Field excitation of simple o en two-wire lines has been

considered by a number of authors and two sepa ite, but equivalent,
approaches used. Taylor, Satterwhite and Harr-son (ref. 4) and

Smith (ref. 5) derive a coupling mode' based on the incident tangen-

tial electric fields on both wires of the tr. smission line and on

the short wires of the loads at ,he ends of the the. This approach

is based on the integral form of Ma, eil's equations as applied to

the closed loop formed by the two parallel wires of the transmission

line and the two loads at the ends. In this formulation, there

appear distributed voltage sources in both wires of the transmission

line. as wll as voltage sources at both loads terminating the line.

A different approach has been used by Lee (ref. 6) to determine

the distributed field excitation. This is based on the differential

forms of Maxwell's equations and yields distributed current and
voltage sources along the line, with the voltage source being propor-

tional to the H field and the current source being related to the r field.

Both of these formulations Yield Identical results for computing
the TEN currents flowing on a two-wire line excited by an incident
field. The former approach has b"en extended to the case of multi-

conductor transmission lines by Paul (ref. 7) and Frankel (ref. 8).

and is similar to that discussod in this report. A r'ig.tly different

4. Taylor, C.D., R.S. Satterttlte and C.W. Harrison, Jr., "The Response
of a Terminated Two-Wire Tr smission Line Excited by a Nonuniform
Electromagnetic Field," !FWL EMP Interaction Notes, Note 66,
November 1965; also. IEEE-'Trns. A.P., Vol. AP-'3, pp. 987-989, 1965.

5. Smith, A.A., Coupling of Externdl Electromagnetic Fields to
Transmission LTnes, John Wiley and Sons, New York, 1977.

6. Lee, K.S.H., "Balanced Transmission Lines in External Fields," AFWL
DIP Interaction Notes, Note 115, July 1972.

7. Paul. C.R., "Frequency Response of ulticonductor Transmission Lines
Illuminated by an Electric Field," IEEE Trans. EMC, Vol. EMC-18,
No. 4, pp. 183-186, Noveitber 1976.

8. Frankel, S., ulticonductor Transmission Line Analysis. Artech House,
1977.
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approach has been employed by Kajfez and Wilton in ref. (9), where the
concepts of reciprocity have been used to obtain the multiconductor
transmission-line response to a small aperture excitation of the line.
The method of refs. (4) and (5) has been applied to multiconductor

systems by Straw (ref. 10), but his report is not ., .ely distributed.

The present report discusses in detail the t.-itation of
multiconductor transmission lines by an incident electromagnetic

field using the differential formulation. Section 11 presents the

derivation of the equations describing the termi:.ia, or load, current

responses of a multiconductor transmission line. These equations have,
as sources, both distributed voltage and current generators which are
induced by incident magnetic and electric fields. Section III first
discusses the derivation of these local sour.es in terms of the local
fields and transmission-line geometry. The corcept of an "equivalent

separation" between conductors, as conmionly used for two-wire lines, is
then developed for an arbitrary multiconductor transmission line.
Finally, in Section IV, the incirent field components which contribute

to the distributed sources are given for an incident plane wave striking
the line at an arbitrary angle f incidence.

9. Kajfez, D., and D.R. Wilton, "Small Aperture on a Multiconductor
Transmission Line Filled with Inhomogeneous Dielectrics,* AFOSR-
76-3025-2, Air Force Office of Scientific Research, November 1977.

10. Strawe, D.F., "Analysis of Uniform 4ultiwire Transmission Lines,"
Boeing Report 02-26088-1 under Contract F04701-72-C-0210,
November 1972.



SECTION II

4ULTICONOUCTOR TRANSMISSION-LINE RESPONSE TO DISTRIBUTED SOURCES

As discussed in ref. (1), the response of a general transmission-

line network may be calculated by decomposing the currents on each

tube of the transmisison line into forward and reverse propagating

components. At every junction within the network, a scattering

matrix can be derived to express all scattered components of current

in terms of the incident components. These two sets of relations can

be combined to form a large matrix equation for the incident currents.

This equation, called the BLT equation, can be inverted numerically

and the incident currents determined. Through the scattering matrices,

the scattered and, thus, the total c:jrrents on the lines, can be

determined.

A basic element of the atove network analysis is the determina-

tion of the propagation propertles of the forward and backward waves

on theline, as well as their relative excitation by sources along the

line. For the purpose of this section, therefore, we will consider

only a single section (tube) of multiconductor transmission line.

Consider a lossless section oi multiconductor transmission line

having no sources, as shown in Figure 1. The length of the line is

denoted by 2 and it contains N wires with the N+Ist wire being

the reference conductor. The N-1 wires are required to be parallel.

but not necessarily coplanar. For .ch a line, its electrical properties

are determined by a caoacitive coeft -ient matrix, (C') , and ann0m)
inductive coefficient matrix, (Ltnm , which depend only on line
geometry and dielectric properties around the line. For this line.

these matrices are nonsingular matrices of order N.

As discussed in ref. (1), the voltages and currents on this line

without sources must obey a coupled set of partial differential

equations as

iS



Wire 2

Conductor Nel
(reference)

Figure 1. Section of multiconductor transmission line.
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(InZS)) (C *) (On,m) (n(z(S))

where the notation (Vn ) represents an N-vector for the line voltage

and a similar notation holds for the current. The parameter s is

the complex frequency variable, and the tilde represents a Laplace

transformed quantity.

Equation (1) can be manipulated into two separate equations

for voltage and current vectors. The current equation becomes

(20In(zs))
Iz2  .- s (C~ (Ln~m) (In{zs)) - (On) (2)

which is a one-dimensional wave equation for the N-vector current.

For a lossless multiconductor section immersed in a uniform,

homogeneous dielectric, the matrix product (C' )(L'n m ) inn~in

Equation (2) is diagonal and the individual elements of the current

N-vector are themselves a solution to a simple wave equation:

2(z~s) S2
)z -- n(Zs) - 0

v

where v Is the velocity of wave propagation on the line.

A more general line, however, does not have a diagonal result for

the (Cnm)(Ln.m) matrix, although it is possible to diagonalize it

through the use of a nonsingular NxN transformation matrix, denoted

by (Tn) , which consists of the current eigenmodes, (@n) , as

coluns. The on'S are solutions to the eigenvalue equation

2 2 )( I (3)
n, nm n1  ni

10



where - is the ith eigenvalue corresponding to the eigenmode
I (*n) t

By introducing a change of variables as

(in (zs)) - (T n,m)(in(zs)) (4)

where (in (z.s)) represents the modal currents, the wave equation

for the modal currents becomes

2(1 (z.s))
2 2

where ( )2  is a diagonal matrl, containing the 2 term as
nm

elements.

Since the matrix (. :,uation (51 is diagonalized,

the solution for themodal currents can be expressed dire( tly as

exponential functions of position, and the total solution for the

line currents becomes

(In(Z.S)) a (Tn e )  • (in) 4 e•~ (a- (6)

where (W) and () are N-vectors which define the amplitudes of
n n

each of the propagating modes on the line and which depend on the line

termination and excitation. The terms e( are diagonal

matrices having as elements e . where j "

A similar development for the line voltage (Vn(Z.s)) can be

carried out to determine voltage modes and a propagation equation similar to

Equation (6). By defining a characteristic impedance matrix as

(ZC ) . 1(Cn.W)'(T nm)(in )(T n ) (7)



the line voltage N-vector can be expresseo using the san-, constants

(&) and (a-) as in Equation (6):

n n

0V (z~s)) (Z~)(Tn. (e'(in'm (a+) -e( rn,m)z (g) (8)

The unknown constants (i+) and (&) are determined byd i ny
taking into account the loads at each end of the line, as well as

the excitation. Consider the line shown in Figure 2, which has

lumped voltage and current sources at z a z. . as well as load impe-

dances (Z ) and (Z2  ) at z- 0 and z- t respectively.

On the section of the 114' 0 1- z " zs  Equations (6) and (8)

are valid, since this sect )n of the line is source free. Similarly,

for z SS z t similar juatton are valid, but with different

constants, (n ). By relating ,Vn kZ's)) to (in (z,s)) at

z - 0 , and z I f through the load impedance matrices and by

relating the discontinuities of (Vn(zs)) and (n (z,s)) to the

voltage and current sources at z z , a set 3f linear equations

can be developed with the (i n) constants for --i section of line as

unknowns.

Of special int-rest are the load currents. i.e , ( (Os))

and (I (t,s)) . Using the solutions for the ( n) as well as
n ft

Equation (6) for z - 0 and z , the load currents may be

expressed as:

0 n(ts!) (O n,m ) nm ( -lnm)

n(+n

( (T ) (Tm )e 'm  ) 1(s))

12
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where the terms (+ (z sS)) and (O n(z ss)) represent the source

terms for the positive and negative traveling waves on the multi-

conductor line. Those are referred to as combined current sources,

since they have the dimension of current but arise from both the

applied voltage and current sources at z a zs  In this equation,

cefficent matricsand (r2n.m) are generalized current reflection
coefficient mtrices given by

rI nM [0n 1 (Zcn ) + [(Zn ) - (ZC )n. (10)

for the load at z - 0 , and similarly for (r2n,m ) at z •

with (22nm) as the load impedance. As defined previously,

(Zn,.m) is the characteristic impedance matrix of the line.

Notice that the matrix equation in Equation (9) has, as its

elements, matrices. Thus, it is referred to as a super matrix equation.

The double dot operator (:) is used to signify the product between.

two super matrices by first treating the super matrices as if they

were regular matrices and then performing matrix multiplications for

each of the individual multiplications of the super matrix product.

The form of the source terms in Equation (9) can be shown to be

S1(n,m)Zs -1
nm n,

( nS)) (Tn )e *(Tn )  • ZCnm)V((sS)

* (TlS)(zSOs)))n (11)

and

+ (n,m)(-zs)(f n (s)) " (T n.m).e n(nm' , Z a'.vS(s))
n \ n( "

n (T zs))) (12)

With these source terms, the terminal response of the transmission

line can be determined for lumped voltage and current sources at

z s  For field excitation of the transmission line, it is

14



necessary to consider distributed excitation, as opposed to the

discrete excitation discussed above. This can be regarded as a

simple extension of Equations (11) and (12) by integrating over

the source terms ( s)) and (js)). Doing this, the combined
current sources become

(n(S)) Tn)e " (T )'.((Z "(V ( s  ))

nn n~mn
0 m

+ (s(S)( dE (13)
n

in ( nn)e• (T)no) cnm

- (;(S) (&.s))) dE (14)

which follows directly from superposition. Notice that now the voltage

and current sources are per-unit-length quantities, and hence denoted

by a prime. These quantities must be determined given a knowledge of

the incident electromagnetic fieid on the line, as well as a knowledge

of the transmission line crois-sectional geometry. This is discussed

in the next section of this report.

Is
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SECTION III

OUTERMRNATION OF DISTR1BUTEO VOLTAGE AND CURRENT SOURELS

As indicated in the previous section, the terminal (or load)

currents of a multiconductor transmission line can be evaluated using

Equations (9). (13) and (14) if the distributed voltage and current

sources (%(S}(zs)) and (,'(s)(z.s)) are known everywhere along

the line. In some instances, such as a small aperture or other

localized source close to the transmission line, it is possible to
approximate the solution using a discrete source position, as in

ref. (9). For an arbitrarily incident plane wave, however, this is

not possible. Sources distributed over the entire line are necessary.

Consider the case of a single multiconductor cable in free space

and with impedance terminations at each end, as shown in Figure 3.
Assume that in this bundle there are n+l wires, with the n+lst

wire being the reference conductor. The electric and magnetic fields
in the vicinity of the line can be divided into two parts. These
are the Incident components, tfnc and A1nc and the scattered

components ts and s such that

HH + (15b)

The scattered field coponents are caused entirely by the induced

currents and charges on the nv+1 wires, as well as by the currents on
the terminations. The scattered fields fro the line can be further
subdivided into three different classes. There are TEM, TE and T1h
transmission line modes, which are produced by "transmission line"

currents, having the property that the components of the total current
on each of the conductors sum to zero.

In addition to these currents, there are "antemna mode" currents.
These are currents which flow on each wire (but with a different magnitude

16



Ipedance 
Load)

-I nc

n+1 wires nc

Imedance Load

Figure 3. Isolated multiconductor line excited by
incident plane wave.
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for each wire, in general) and are subject to the constraint that the

voltage difference between any two conductors in a transverse plane

is zero. Furthermore, these currents go to zero at the ends of the

line.

Finally, there can exist quasi-static current and charge distri-

butions which contribute to the scattere4, field but have a net current

or charge of zero on each conductor. Although these latter currents

and charges do not play a role in computing the transmission-line

response directly, they are important in determining the coupling of

electromagnetic fields to the transmission line.

A complete and rigorous solution for the field induced currents

on the multiconductor line in Figure 3 can be obtained by formulating

and solving a set of coupled integral equations for the wire and load

currents, given a particular incident field. In many cases, however,

such a complete solution for t current is not needed. Fer lines

which are long compared wi 2* the wire separation, the currents due to

TE and TM fields attenuate rapidly from the loads or other line

terminations, giving rise. theref.o-e, to a current distribution which

corresponds primarily to the TEN cqc "ents plus the other scattering

currents mentioned above. Moreover, in many cases, only the transmission-

line current response is desired since the antenna mode currents do

not contribute to the load response in the general case, and if the

transmission line is next to a reference ground plane, the antenna

mode currents are not excited at all. Under the assumption that the

TE and TM currents are negligible and neglecting the effects of load

currents, the total f and H filds in the vicinity of the transmission

line can be written as

i t en -nt, + TEM + imt (16a)
and

- Hint nt H TE Hst



where the subscript (inc) refers to the incident (or free space)

fields, (ant) denotes the fields produced by the antenna mode currents,

(TEN) stands for the fields due to the transmission-line currents,

and (st) is for the portion of the fields caused by the static

distribution of current and charge on the wires, determined with the

condition that the total current and charge be zero on each wire.

Following the approach used in ref. (11) for single-wire lines

and in ref. (7) for multiconductor lines, Maxwell's equations can

be used to derive a v-i relation for the transmission line currents.

Consider a uniform section of multiconductor line shown in Figure 4.
stFor a time dependence of e Maxwell's equation may be written as

vxt . -s (17)

and on a path C1 , from the reference conductor to wire 1 (where

d1I represents an element of the path. and R1  is the normal to the

path), we can integrate Equation (17) to yield the following:

- dj dt - s dl (18)

This result is standard, and 4ts derivation will not be repeated here.

Noting that the line integral of the electric field in Equation

(18) is the negative of the voltage between the two conductors, this

equation may be written as

dY r b
:divi iTEH-f dt + aJw Ont.n dt

jw 1 (jInc + Ot).t dt (19)

a

11. Lee, K.S.H., "Two Parallel Terminated Conductors in External Fields,"
IEEE Trans. EMC, Vol. EMC-20, No. 2, pp. 288-296, May 1978. (A
revision of ref. 6.)

19
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zb

coniduc tor
m dtxz

x

Figure 4. Cross section of multiconductor line showing
integration path C1 from point a to b
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As discussed by Paul in ref. (7), the term involving the B field.

which arises from all TEN currents on the multiconductor line and is

a magnetic flux per unit length, can be computed in terms of the

inductance coefficient matrix elements as

jb -T U Z1 =1Ll 11 +L 12 12 Lln In (20)

where i i n represent the currents on the n (non-reference)

conductors.

From our definition of the "antenna mode" currents, the voltage

between wire 1 and the reference is zero for these currents, which

implies that the antenna current flux term is also zero. See ref. (12).

Thus. we have the relation

fb -A dt H 0 
(21)

With these substitutions, Equation (19) can be written as

b
di I ' + ( jInc -A d (22)-- -jw (Lill, 1 + 'j2 2 + _ L f S+i

dz '~ LI~ 1212 in n) *f

a

This procedure may be repeated for each of the n wires in the bundle,

and the resulting equations expressed in matrix form are

12. Frankel. S., "Evaluation of Certain Transmission-Line Forcing
Functions," AFbWL-TR-78-171, Air Force Weapons Laboratory, Kirtland
Air Force Base, NN, (*.o be published).

21



d(V )( bn :+ t, dt23
4 b 1 A+a(3)

- nil(fn) +s

The last term in this equation ha dimensions of (volts/unit length)

and is essentially a distributed voltage source for the transmission

line. Denoting this by (i (S)) , we then have

b

(s)) s SLA0  (j0flc + 0)n (t4

where the relation B - 10N has been used. The differentia' equation

for voltage and current in Equation (23) then becomes

d(Vn )  (S)
d- + s (im) ' VN ) (25)

A similar manipulation can be performed using the other

Maxwell equation

VxH - sE (26)

to obtain the second telegrapher's equation containing sources. Applying

this to the contour C i I n exactly the same manner as in ref. (11).

the following relation may be derived.

- H-fl dt ~s E-dI (27)

a a

22



By inserting Equation (16a) into this last equation and noting that

the antenna mode contributions vanish, since by definition of the

antenna currents, ~f nt'd! 0 and f gant -f dt- 0 , this

equation can be written as

. I n0 + Ht ).fl dt s e-d (28)

a a

or, as done by Lee (ref. 11), expressed as

dz f TR dt s C E-d s (Einc +  )dt (29)

a a b

Using Equation (20) and recognizing that f1 odt is the voltage

-Vl , Eqaution (29) becomes a

I d "n • ' n) - - - c • '.dt (30)
dz (L111 "',in 1 f..' E

a

for the first wire. This process can be repeated for each wire, and

the following matrix equation can be developed for the transmission

line currents (in ) and voltages (Vn

1 d(I ) ( bn ( l ~ )
I ,(Ln,"m).da(t n )d  s ca'dn bn (j.Inc + is).d--nl (31)

•d - C(Vn) -s (31

Rearranging terms slightly yields the second telegrapher's

equation

23



d(In )
n s(' (V') (S(S)) (32)

dz (Cn,m)n n

where the source ter" (in(') is given bynI

(s)) --s(Cn (r-inc + ts- )d-fn( 3

(1n (C)) (33)

Note that in deriving this relation, the assumption that

(L' )" (C',m) = .0, (34)n,m nml

has been employed, a result which implies that the lines are within

a uniform, homogeneous dielectric medium.

In an inhomogeneous dielectric region, say for the case of

each conductor having a separate dielectric jacket, It is known that

true TEM modes cannot exist. However, an approximate analysis can be

carried out by assuming that Equat 'ns (25) and (32) are applicable.

The validity of this "quasi-TEM" assumption lies in the reasonable

comparison of theoretical and experimental results for the multi-

conductor system (ref. 13).

It is to be noted that the basic telegrapher's equations derived

here for the transmission line currents and voltages are different in

form than those developed by Paul (ref. 7). This is due to the fact

that Paul has integrated from the center of one conductor to the other

center, not from one surface to another of the thin, widely spaced

conductors which he considers. For the more general case of fat,

closely spaced wires, the total static electric and magnetic field in

13. Chang, S.K., F.M. Tesche, D.V. Girl and T.K. Liu, "Transient
Analysis of Multiconductor Transmission-Line Networks: A Comparison
of Experimental and Numerical Results," AFWL-TR-78-152, Air Force
Weapons Laboratory, Kirtland AFB, NM, February 1979.
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any transverse plane must be used to compute the equivalent line

sources.

Aside from a difference in the definition of the unit normal

vector n , the major difference between the formulation of Lee in

ref. (11) and the present analysis is the existence of an additional

antenna mode source term in Lee's two-wire analysis. This two-wire

analysis could be extended to a multiwire case, and thus would imply

the existence of similar source terms in the present multiconductor

analysis. As discussed by Frankel (ref. 12), the apparent discrepancy

arises out of different choices for the "antenna cu,.:ent" by Lee, which

thus has an effect on the remaining transmission-line current.

As stated earlier, our choice of the "antenna current" is

that current flowing in each wire which produces a voltage difference

of zero between any conductor and another at any transverse plane in

the line. This choice is also used by Uchida (ref. 14), and thus leads

to a decoupling of the transmission line currents from the antenna

mode currents.

Although explicit expressions for the voltage and current sources

have been developed in Equations (24) and (33), it still remains

necessary to evaluate the scattered static fields rs and 0 ,

before the source terms zan be used in Equations (13) and (14) to

determine the load response of the multiconductor line. To determine

these source terms, it is necessary to solve two static boundary value

problems. To determine the current source in Equation (33), it is

necessary to solve the two-dimensional static problem illustrated in

rigure S. An incident (free space) electric field strikes a collection

of conductors, on which the net charges are zero. A static scattered

field is produced by the local charges induced on each wire, and the

14. Uchida, H., Fundamentals of Coupled Lines and Multiwire Antennas.
Sasaki Publishing, Lt., Sendai. Japan. 1967
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Wire I

a -------

a---- -------- e

Reference conductor

Figure 5. Cross section o: multiconductor cable in
incident E field showing typical field
distribution and integration path from a
to b Each conductor has zero net charge.
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integrals in Equation (33) are then evaluated along any contour from

point a to b , using the total scattered field, 0 nc + -s
The solution to this problem for the multiconductor case is

similar to the two-wire problem discussed by Lee, but extended to

more wires. It is solved by looking for the solution to

2 a0 (34)

exterior to the wires, with the condition that o - constant on

each of the conductors subject to the constraint that

dS R 0 (35)

on each conductor, i , and that at infinity, the potential is

$ ,t O..nc (36)

i ncHere s represents the incident or free-space potential field in

the absence of the transmission line. Once this equation is solved

(usually by numerical means) the potentials of each wire, €1 , can be
determined, and the integrals of Equation (33) can be determined directly

i  (inc . ).di . " "n+l )  (37)

a

It is possible, however, to express the integral in Equation (37)

in a simpler form, using only the incident field, enc , and a vector
equivalent distance, hI , In a manner similar to that of ref. (11).

Consider an auxilliary problem which has a potential field given by I*

and is defined by the relations

V2 •0 (38)

with - constant (but unknown) on each of the I conductors of

27



the multiconductor bundle, and with

dS 0 (39)

for all conductors except for the 1th conductor and the reference

conductor, where we have the constraint

f- aS (40)

wire i

and-
and n+l dSn I •" (41)f n ~n n+1
reference

The solution to this auxiliary problem can be used to find the

field excitation of the transmission line by using Green's identity,

(OV4- 0 42

and applying Gauss' theorem to give the expression

all conductors S4

where St, is a closed surface at infinity. Using the facts that

o and *- are constant on the conductors, that

f - dS - 0 (44)

for all conductors except the i th and the reference conductor, and

that

f!..,- dS' - f (nc dS - a* dS

S wires wires
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where
C•-, "J (46)a n

is the charge density on each conductor for the auxiliary problem and is

a known quantity. Equation (43) can then be expressed as

(1(, . n+l) jot dSi 1 lt nc dS ! ,InC2
-n-1 I dl 1 -- cdS2-...

i S S 2
(47)

Using Equation (40) and the relation fnc -Er , this last

equation takes the forin

( -i " On+l )  "cnch1 (48)

where the vector h is defined as
/Irail dSl + r a* d S 2 + " " Sn lr (-.+I dSn~

ri ddi 2 2nil nil

S1  2 - __ Sn (49)

Si

With this expression, Equation (37) can be conveniently expressed as

i (-inc + f).dil nc.j-i 
(50)

and the N vector equivalent current source becomes

(Qsmm)). (5,)

The vectors h, are referred to as the "fleld coupling vectors"
for the line, and also as the "effective height" of the conductors.
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Physically, they correspond to the vector distance between the charge

centroids on the multiconductor system, given a total charge Q on the
Ith conductor, -Q on the reference conductor and zero net charge

on all others. Figure 6 illustrates these relationships.

For the case of thin, widely separated wires, the vectors

h are simply the distances from the center of the reference con-

ductor to each of the wires' centers. For more closely spaced wires,

the field coupling parameters must be calculated, using the integral

equation approach outlined by Giri in ref. (15).

A similar procedure can be carried out for determining the

distributed voltage source in Equation (24) by solving a magnetostatic

problem. The details of this are identical to that described by Lee

(ref. 11), modified by the presence of more than just two conductors.

The results are that the same field coupling parameters, hi . that

are used for the electric field calculations may be used for the

magnetic fields. This results in the following equation for the

distributed voltage source.

(Vs)) . S6.0 (( i ).4li n c )  (52)

The preceding discussion has been for the field excitation of

an Isolated multiconductor line, in which one of the conductors in

the bundle serves as the reference. An often encountered situation,

however, is not this configuration, but one with an n-wire bundle

next to a flat, conducting ground plane. For this case, the ground

plane serves as the reference conductor, and the antenna mode currents

at not excited.

15. Girl, D.V., F.M. Tesche, and S.K. Chang, "A Note on Transverse
Distributions of Surface Charge Densities on Nulticonductor
Transmission Lines," AFWL Interaction Notes, Note 337, April 1, 1978.
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ith conductor

Qt Q

center of postive charge

center of negative charge

reference conductor (n+l)

n+l a -Q

Figure 6. Cross section of isolated n+l wire
multiconductor I1 , showing field coupling
vector for the t~n conductor.
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For this case, the field coupling parameters are still

calculated as above. For example, as shown in Figure 7, the

coupling parameter ht is calculated by placing a charge Q on

wire i and no net charge on the other wires. By image theory,

there is an image charge of -Q on the image of wire i and the

resulting charge centroids may be computed. The coupling parameter

vector is directed away from the ground plane and has a magnitude equal

to the shortest distance from the ground plane to the ith wire's

charge center.

In this case, note that the incident fields Onc and Hinc

which are used in Equations (51) and (52) must include the reflection

effects of the ground plane. Thus, if rinc and inc represent

the free space fields in the absence of the ground plane, the

exciting fields of the line to be used in the above equations are

En U 2( n . ) (53)

and
"t "(54)

where r is a unit normal to the plane, k is the direction of

propagation of the incident wave and the subscripts n and t

represent field components normal to and parallel to the ground

plane, respectively.

32



QI Q
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,,Q
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line ove a grun lae
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SECTION IV

EXCITATION FIELDS DUE TO INCIDENT PLANE WAVE

The expressions for the distributed current and voltage sources

in Equations (51) and (52) in the previous section are quite general

and depend only on the local incident electric and m'agnetic fields

on the line. One type of incident field which is useful to consider

is a plane wave of arbitrary angle of incidence.

Consider a single transmission-line tube being illuminated by

a plane electromagnetic field. As shown in Figure 8a, the tube is in

the i direction and the k vector of the incident field arrives with

angles *0 with respect to the z axis and Po $which is the incli-
nation angle of the incident field. Two different polarizations of

the incident field are possible, and are denoted as TE and TN,

respectively. The TE case occurs when the incident E field is

perpendicular to the plane of incidence, which is defined as the

plane formed by the k vector and its two-dimensional projection in

the x-y plane. The T1 case, conversely, occurs when the f

field lies within the plane of incidence. Figure 8b illustrates

these different polarizations.
For both of these polarizations, the field components at the

multiconductor tube can be expressed as follows:

TE Fields

inc Iinnc .ncH _-H sin 0 E'n *-E' sin eCo
z 0 s0cos o

hinc . Hinc sinc E nc sine o sinx 0Ox 0 0

H inc £ 0E inc E inc cos6
y y O 0
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y

Tutb Incident propagation direction

Plane of N
Incidence T oaiain

H ~ (TN Polarization)
Ix

Z x
z%

(b)

Figure 8. Geoetry and polarization of the
Incident plane wave.
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TE Fields

Hinc - snc n Cos t Einc. E sin
z 0 0 Z 0 0
Hinc . -Hinc sin 6 sin Einc = -E cos ;P

X 0 X

Hinc .Hinc CEnc .0y 0 y

As seen from Equations (51) and (52), the important quantities

for determining the distributed sources are the electric field
component parallel to the vectors hi . and the magnetic field

componet perpendicular to h~i . Consider the geometry shown in

Figure 9. The ith  conductor is shown with its coupling vector having

an angle 0i with respect to the chosen x axis, and a magnitude
hi .For this case, the components of the electric field in the

direction parallel to hi are given by the following expressions

for the ith conductor:
.mc

E -E " sin 6, + Ex  cos 01

" E'nc (sin 6, Cas 00 - cos 91 sin Ao sin Yo)
(TE polarization) (53a)

S-E Inc cos Ai cos 4t (TM polarization) (53b)

and

H - -H cos 0t + Hx sin

a Hinc sin e cos *o (TE polarization) (54a)

a -Hlnc (cos t cos *o sin e1 sin e sin 4o)

(TM polarization) (54b)

With these field couponents, the distributed vector current
and voltage sources take the form
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y

1 th conductor

0 49

x

reference

Figure 9. Cros., )n of multiconductor line showing
field coupling parameter and pertinent
field components.
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andn
sw.S) (h H)(56)

n

and Shwld be used in Equationis (13) and (14) to evaluate the line
response for an incident plane wave.
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SECTION V

CON4CLUS IONS

This report has presented a discussion of the field excitation

of multiconductor transmission lines. First. a general expression

for the current response at the terminations of an N-wire multicon-

ductor cable has been developed in terms of distributed voltage

and current sources. In Section III relationships between these

sources and the total static electric and magnetic fields in the

vicinity of the transmission line are then derived. These are then

related to the free space (or incident) fields through a vector field

coupling parameter or equivalent separation of the lines. Finally,

Section IV expresses the distributed source terms for the multi-

conductor line in terms of the angles of incidence and polarization

of an incident plane wave.

This work expands upon the past studies of field excitation

of two-wire transmission lines. The field coupling parameters for a

multiconductor line are seen to be determined from a series of cal-

culations involving specifying a zero net charge on all conductors

except the reference and the conductor for which the coupling para-

meter is being determined. It is noted, furthermore, that the

excitation of the line depends strongly on the line's orientation

with respect to the incident fields.
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