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Abstract .

A rélatively inexpensive computer code is developed
to calculate the peak value of the glectric field contained
in an electromagnetic pulse pgenerated by the gamma rays
fron a high'altitudé nuCléér burst. The céde_is based
on the Karzas and Latter theory for the production of
Compton electrons and their interaction with the earth's
magnetic field,

The code can be used to calculate the peak value
of the electric field at a target anywhere on or above
ground level, resulting from.a nuclear burst above 60 km
altitude with a gamma yield up to 60 tons. Either the
direct or the ground reflected wave can be calculated.
With spécial care, bursts up to‘;Ikt of gamma yield can

be used.
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A COMPUTER CODE FOR HIGH ALTiTUDE EMP

I. Introduction

* The effects of a nuclear environment on aerospace
sttems is an important factor in systems analysis. During
the past few years several students have worked with
Professor Bridgman at the Air Force Institute of Technoiogy
(AFIT) on a computer code to determine survivability of a
sysiem with known nuclear vulnerabilities from a variable
nuclear threat. The AFIT survivability code capabilities
include blast, thermal, x-ray, gamma ray, and neutron
effects. .The high altitude EMP code presented in this
report is intended to be used in conjuction with the AFIT
survivability code,

The EMP (electromagnetic pulse) from a nuclear weapon
is usually considered to be a radiating electromagnetic
wave of short duration containing many frequencies,
However, the nuclear'generated EMP was not studied seriously
until a considerable time after the first nuclear explosion.
At present there is a significant amount of work being done
to moedel EMP generation and effects. For example the Air
Force Weapons Labofatory (AFWL) and several civilian
companies under contract to the USAF are working in the field.
There are several different types of EMP with distinc-
tions made between the mechanisms which generate them.
Kinsley (Ref 1) presents a comprehensive discussion of
the various types of EMP, For example, a nuclear burst

on the ground produces an EMP with different characteristics
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than those from a high altitude burst. Also, nuclear burst
products interacting directly with a system can produce an
EMP within the system or even within the circuits of the
system, This report considers only the EMP generated by
high altitude burst gamma rays interacting with the at-
mosphere. -

The high altitude EMP code developed in this report
is based on the theary of Karzas and Latter {Ref 2).
Briefly, the theory develops a2 model for the interaction
of Compton electrons with the geomagnetic field. The
Compton electrons are produced by prompt gamma radiation
from the burst in a reasonably well defined region in the
atmosphere. Several simplifications are made before
arriving at the final equations.

Since several of the simplifications and assumptidns
used are implicit in the presentation of the theory, it
is appropriate to list them here. Only one group of
monoenergetic unscattered gamma rays are considered to
produce Compton electrons. Each gamma which interacts
is assumed to produce one and only one Compton electron
initially traveling precisely in the radial directioﬁ.
No angular distribution of Compton electrons is allowed.
All Compton electrons are assumed to have the same energy.
Curvature of.the Earth!s magnetic field is ignored. The
electromagneticlfields are not self-consistent, that is,
only the geomagnetic field is considered to affect the
motion of the Compton electrons. Cascading of secondary

electrons and recombination of icns is ignored. The low
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frequency portion of the pulse is not considered. The Earth
is assumed to be flat and the finite conductivity of ground
is not consideréd. The burst is assumed to be far from the
absorption region. Only gamma ray effects are considered.

Although the final model is somewhat restricted by
these assumptions and simplifications, the end\result is
a relatively inexpensive computer code which gives a
peak value of the electric field at any . target point on or
above the ground, which is an upper bound on the actual
peak value.

Section II of this report develops the theory and
derives the equations used in the code. Section III
describes the calculational procedures used in the code,
Section IV presents a sample of typical results and a
study of input parameter variation. Section V is a
discussion of the code's limitations and uses, with
recommendations for possible improvements. Appendix A
is a code user's guide. Appendix B is the detailed flow
charts for the entire code. And finally Appendix C is a

listing of the complete code.
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‘11, Theory

Overview

The EMP.problem is a problem in classic electromagnetic
theory. A sﬁlutioﬁ of Maxwell's equations is a solution
of the problem. In this case it is necessary to model the
current and charge densities generated by the gamma rays in
the absorption region to obtain the sources and conductivity
needed to solve Maxwell's equations.

Expressions for the current sources and conductivity
are obtained in four steps. The transport of the gammas
from the burst to the absorption region is used to obtain
the number density of reacting gammas., This result is used
with the models for the current and charge densities to
obtain preliminary expressions. Then after considering
the relativistic motion of the Compton electrons, the
preliminary expressions are transformed to spherical co-
ordinates.

After presenting Maxwell's equations in a convenient
form, they aré transformed to spherical coordinates and
retarded time, A high frequency aﬁproximation is then made

to arrive at the final equations,

Electron Current and Density

Gamma Transport, Consider the geometry shown in Fig. 1.

The nuclear burst occurs at the origin at time, t = 0. The
gamma rays move to point r' in time t' and at that point and

time interact to create Compton electrons. It is assumed
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that each gamma creates one and only one Compton electron
traveling in the radial direction with the maximum Compton
recoil energy.,

The gamma ray emission rate can be taken as

R 10) | (1)
where
N(t) = number of gamma rays emitted
Y = gamma rvay yield of burst
E = mean energy of the gamma rays
f(t) = time dependence of the yield
and

;T of(e)de = 1 | (2)

The number density of gammas, g(r), which interact

at a point, r, can be taken ‘as

T dr! .
exp{ -/ :
e(x) = L - ArD) (3)
47r A{r)

.where
A = mean free path for production of Compton
electrons.

Electron Currents and Densities. The rate of production

of primary (Comptbn) electron density, Mpris is

dn_ .
—o— = g(r)E(t - r/c) | (4)



GNE/PH/74-1

Following the Karzas-Latter approach (Ref 2) it is
assumed that the electrons maintain their initial speed,
VO, throughout their range, R, and thenvabruptly stop.
Also; it is assumed that the secondary electrons are made

at a uniform rate during the lifetime, R/VD, of the Compton

electrons. Therefore, the rate of production of secondary

electron density, Nooct 1S
d"sec _ Epri/33ev R qV, . (5)
dt R?VO pri R pri
where
pri = the initial energy of the Compton electrons
R = the range of the Compton electrons in air
q = Epri/SSev |
33ev = average lonization energy per molecule for
air
Vo = the speed of the Compton electrons
R/YO = the lifetime of the Compton electrons

Now consider the current resulting from the Compton
electrons, The differential current is the charge times
the velocity times the differential density of electrons,

Hence

43 = -eV(t-t')g(r')E(tT - r1/c)dt? (6)
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where

-

V(t-f') = velocity of the Compton electrons at

time t which were created at time t!',

Putting (6} into integral form gives

t

3% = -e [oerpy, EGIECE - r/e)V(e-t1)dt!

Now let

Also note that
(r-T') << r or T°
for distant explosions (see Fig. 1}. So,
g(r) = g(r')
Using Eqs (8), (9), and (10) in_Eq (7) gives

' R/V _ .
jc = veg(r) IU 0 ;(T')f(r - T! + x(z ))drl

Using similar arguments,

R/V '
n__. = g{(r) ID 0 f (T - 11 X(z )) dt?

pri

(7)

(8a)

(8b)

(8¢c)

(9)

(10)

(11}

(12)
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And putting Eq (12) into Eq (5) yields

. A ' '
Msec R {w “pri(T ydt

qv R/V tr : '
g(r) —R—O {:; [IO 0 f (T' - T = i—(-:[c--l-) d'["] dt!' (13)

Relativistic Electron Motion. Equations (11), (12),

and (13) contain r(t)} and X{(t) which are not yet defined in
an easily obtained form, The equation of motion for 2

Compton electron is

V) = -eVxB
3t (»YV) = -eVXB, (14)
where
m = electron rest mass
2. -
Y = [1-(v/e)?]"}/2
- -
BO = earth's magnetic field f BOUz
Again it is assumed that VU is constant throughout the
electront's lifetime.
With o = eBOme Eq (14} becomes-
d_J(1) = -V(O)X0 & 15
3T (t) = -v(1)} zw (15)
Breaking Eq (15} into its rectangular components
dvx
— = =~V 6a
a7 y (164)
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av _

-—-z-d_t = w\'x (16b)
dvz
i = 0 (16¢c)

" A solution for this set of equations is

Y =V cos T ) {17a)

b 4
Vy = YL_Si“ T | {(17b)

Y =YV {(17¢)

where vV, is the initial velocity conmponent perpendicular to
> -
B0 and i is the initial velocity component parallel to By
and both are constants with respect to T,

Transformation to Spherical Coordinates. It is conveni-

ent to transform the above solution to a spherical coordinate
system with its origin at the burst point. The transforma-

tion from rectangular to spherical coordinates is

Vr = Vx sin @ cos ¢ + Vy sin 0 sin ¢ + Vz cos 0 (18a)
Va = Vx cos 9 cos § + Vy ¢cos 9 sin ¢ - Vz cos 8 (18b)
V¢ = -Vx sin ¢ + vy cos {18c)

Without loss of generality the coordinates can be chosen
such that V lies in the X-Y plane, hence ¢ = 0, and the

transformation becomes

10
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V.=V sin g+ V, cos‘g ~ (19a)
ve =V, cos 8 - vz'sin 8 (19b)
v¢ = v)r (19¢)
Note that
Vv, = VO sin 9 ."  (20a)
“‘ = Vo cos 8 (20b)

Putting Eqs (17) and (20) into Egq (19) gives

Vr = Vo[sin2 8 cos wr *+ cos2 6} (21a)
Ve = Vo[cos 9 sin 0 cos wr - sin & cos 8] {21b}
V¢ = Vo[sin @ sin wrt] {21c)

Now X(T) can be written as

2 sin wr

T . 2
X(t) = ID Vrdt = V0[31n 8 — + T cos” 8] {22)

Equations (21) and (22) substituted into Eq (11) give‘

R/V

4 0
J = -
eg(r)Vo IO

f(’['}[cos2 g + sin2 8 cos wr'ldt! (23)

R/V

Cc ¢
J6 eg(r)Vo !O

f(T)[sin 5 cos & (cos wr'-1)}dt' (24)

R/V

¢ _

O £(T)[sin & sin wr']dT! . (25)

11
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where .

T = 1 - (1 - R C052 B]T' + B 5j_n2 a ii;ll_aﬂzl (263]

with
B~ Vy/c t (26b)

Equations (23), (24), (25), and (26) prbvide the
Compton currents within the abseorption region in a form which
can be used in the final field equations. 1In addition teo
the Compton currents, an expression for the conductivity
within ﬁhe absorption region ié needed.

Equations (21) and (22) substituted into Eq (13) give

C[VO T Rf"fo 1 H t
Boee(D) = - 8(0) [, [y © £(TdTIAT (27)

where

"
Tt = ¢' - (1 - B cos? 8)t" + B sin® @ 352591* (28)

Consider the equation of motion for secondary electrons,

+ -
Neglecting the VXB, term, which is small compared to the

0
other terms (Ref 2) it is

g .
dv E
where
v = electron cellision frequency,

c

12
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These secondary electrons have velocities in the thermal
region and are assumed to reach their maximum velocity

instantly., 1In this case, Eq (29) becomes

> -e' -+
vV = ﬁgz E (30)

The current source from the secondary electrons is

nsec(T] 2+

+5ecC >
J = -BV(T]nsec(‘l’) = BT e E (31)
c
or in terms of conductivity
3% « g(m)E (32)
where
n (t)
o(t) = _355___ e? (33)
¢

Equations (32) and (33) provide the needed expressions

for the conductivity.

Electromagnetic Fields from High Altitude Currents

Maxwell's Equations. Now that the Compton currents and

the conductivity due to secondary electrons have been ob-
tained, consider the field equations,

Maxwell's equations are

TxE = - (34a)

e

13
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1-’
> >
VB = ugd + L3R (34b)
[\
q
. (34¢)
"€
VB =0 ' (34d)

where
..)
J = total current density

q, = total charge density

Continuity of charge requires

qu _ '
A SN - (35)

It is convenient to combine the above equations into
...’.

-
equations containing only E in one and only B in the other.

Doing so gives

2 o>
2 l1 9 2 aJ 1 3
v - E = + — Vq (36)
AP 03t &, v
2 1 32 - T e .
Ve - S5 S ) B eugVxd (37N
¢’ 3t

Transformation to Spherical Coordinates and Retarded

Time, Equations (36} and (37) will now be transformed to
spherical coordinates and retarded time, Consider the trans~

formation

14
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T =1t -1/c ‘ (38a)
r' = | (38b)
g' =0 (38¢c)
¢ = ¢ (384d)

This is a spherical coordinate system where time is measured
at each radial point in terms of the arrival of the bomb
gamma rays at that point.

Using Eq (38) it is easily shown that

d 3 '
3t T 3T . (39)
;] 0 1 4 .
3T * 5r7 T ¢ 3T (40)
] ] '
3% - 35T 4D
] 2 : .
5% - 3% (42)
Thus the operator
9
3t
transforms to
a
3T

15
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and the operator

R
v
transforms to
e ~
v -u l23_
r ¢ ot
Similarly, the operator
g2 1 28’
T T2 0.2
¢” It

transforms to

Equation (36) now becomes

* )
2 2193 3 > 3 1 2 ~ 1 99
[V zgﬁﬁr]5=“gﬁ*q"%‘“rzbr— (43)
and Eq {35) becomes
aq N “ 3J
v=w‘ -]..-3—-.+- ° 1 r
- Visu T vyl X (44)

Using Eq (44) in Eq (43) and rearranging gives

-VZE + G —é— ﬁ'j + 1 %q
r ce, e, Y
3 1213
+.§?[E;-§—(rs)+u(JUJ):{=0 (45)
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Similarly, Eq (37) becomes

~V%E » u03x3 + 'g"f'[%_c' g—; (1'3)]

+§—-[MD(GJ-GJ] -0 (46)
at le Wela Ve’e) | T o

High Frequency Approximation, Again, following the

Karzas-Latter model, note that the variation of currents

with distance is slow compared to variations with time and

that the fields resulting from the transverse currents arve
rapidly varying in character, as are the currents themselves.
Therefore, only the 3/391 terms are kept in the transverse field
equations. Since the radial components do not propagate out-
side of the absorption region, they are not considersd further
in this report,

The transverse equations become

3 2123

G Holg ] = 0 (47)
3 [33-—a (TE4) + 3 ]=o 48
dat Lc r 3r $ Bt (48)
3 [21 38 o .

T [E'?'ar (rBe) "¢ J¢_ =0 (49)
a3 213 Yo . 7 _

3 [E For (FB) * & Jp) = 0 - 60

17
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These eﬁuations are called the Karzas-Latter high
frequency approximation for the EMP fields, and they are
useful in the range 0 < 1 < 100 shakes.

Integration with respect to time yields

213 ) -

¢ ¥ 3r (TBg) * Bylg = 0 1)
213

croar (FBy) * ¥gly = 0

2 13 Mg

E?Tr (I'Ba) - C_J¢ = 0 {53)
213 (rp.) = Yo 500 (54)
C T ar ¢ c 9

Recall that the total current density is
+pri *se *> +*
T« 3P0 4 35%° 2 5% 4 o()E : (55)

so Eqs (51) and (52) become

2123 c ,
s E ST (rEB) + ugdg pod(t)Ee =0 (56)
% % %; (rg,) + uOJ; + MU(TIE, = 0 (57)

With the aid of a2 computer, it is now possible to obtain
numerical solutions for the above equations which will yield
a slightly high estimate of the peak value of the EMP pulse

resulting from a high altitude burst.

18
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Below the absorption region the Compton currents and
the conductivity are zero, In this case, Eqs (56) and {57)

have the following solutions:

Ey = C,/r | (58)
E¢ = szr (59)
where C1 and C2 are determined by the values of EB’ E¢, and

r at the bottom of the absorption region.

19
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ITI., Code Description

General Approach

Equations (56), (57), (58), and (59) were chosen as
the simplest ones to solve numerically, Of course, Egs
(24), (25), (27), and (33) are used to obtain the Compton
currents and conductivity needed to solve Eqs (56) and (57).

The B - field equations are not solved since
E = cB (60}

can be used to obtain B once E is found. This relationship
is based on the assumption that the EMP pulse is a spherical
wave propagating in free space, below the absorption region.

The function used for the time dependence of the weapon
yield is the one recommended by Pomranning {(Ref 3)}.

{(a+B8) exp (T-TO)

8D = (/N e T(EwD) Tt T (61)

where N is chosen such that
(s ]
fof(t)dr = 1 (62)

and a > 5,
Bt

T for small v, falls like e

This function rises like e
for large 1, and has a single wmaximum at Tg-

Figure 2 presents a flow chart which is descripti}e
of the approach taken solving the equations., The top of

the absorption region is assumed to be at 50 km altitude

and the bottom of the absorption region is assumed to be

20
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(START)

READ DATA

CALCULATE RMIN AND RMAX

|INITIALIZE CONSTANTS j——y -

y C c
g—| CALCULATE 3., J €, 0

CALCULATE EB' Em

INCREASE r¢

o T

YES

E = JfEez + Em2

3
[INCREASE 7 |

T 7> a0

YES

[ CALCULATE E AT TARGET ]

, |
|FIND PEAK VALUE OF E AT TARGET |

[PRINT OULPUT]

(5T0P)

Fig., 2. Descriptive Flow Chart

21
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at 20 km altitude. Calculations by Latter and Lelevier
(Ref 4) indicate that 20 km to 50 km is the_altitude where
most of the prompt gamma réy energy is deposited.

Figure 3 depicts the target geometry. The value for
RMIN is determined by the intersection of the line of sight
with the 50 km altitude. The value for RMAX ié determined
by the.interseétion of the line of sight with the 20 km
altitude. If the target is in the absorption region the
target altitude determines RMAX for the direct wave calcula-
tion. These two values of r are the limits on the mesh in
the r direction. The line of sight is divided intc the
desired number of steps along r for the integration on r
in the absorption region,

The retarded time direction of the mesh is difided
into 0.1 shake steps up to 10 shakes and then 1.0 shaké
steps on up to 100 shakes. Calculation can be stopped at
any desired TMAX from 10 to 100 shakes, which is the upper
limit of the usefulness of the high frequency approximation.

If the ground reflected wavé is to be calculated,
the mirror image of the target, below ground, is used
to find the line of sight from the burst to the target.
{(Refer to Fig. 3.)

At r = RMIN all of the fields are assumed to be zero,
For each T, equations (57} and (58) are integrated over 7T
from RMIN to RMAX and the value of E at the bottom of the

absorption region is stored., At each step in r, egquations

(24), (25), and (27) are numerically integrated. Then
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equations (58) and (59) are combined into

(RMAX]) (Epyax) (63)

E =
T
target

to find E at the target.
The E array is then searched to find the peak value

hefore'printing out the results.

Inputs

The code uses a right handed Cartesian coordinate
system with the ground in the X-Y plane, the EO vector in
the Y-Z plane, and j pointing towards the equatar, For

o

example,'in the northern hemisphere, i is magnetic west,
; is magnetic south, and ; is altitude. The origin of
the coordinate system is always at ground zero, directly
below the burst. Note that this cocordinate system is not
the same as the Cartesian systems used earlier.

Refering to the above coordinate system the target
coordinates, (X,Y,Z), are read in using units of meters.
If the reflected wave is to be calbulated the altitude is
read in as a negative number, (X,¥,-2).

The height of the burst is read in using units of
kilometers. The gamma yield of the burst is read in
using units of kilotons.

The magnitude of the Earth's magnetic field is read
in using units of webers per square meter. The dip angle

{¢ in Fig. 1) of the magnetic field is read in using

units of degrees.
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NDELR, the desired number of steps to be used in the
integration over r in the absorption region, is read in as
any integer in the claosed interval [50, 500].

TMAX, the retarded time where calculations are to be
stopped, is read in, using units of shakes, as any integer

in the closed interval f10, 1060].

Preliminary Calculations

Before starting the numerical integrations, the cede
performs several preliminary calculations. The input data
is converted to MKS units. The reflected wave is used
whenever Z is greater than 49 km or less than 0. The
target coordinates are transformed to a spherical coordinate
s§stem with the burst at the origin and the polar axis

parallel to B The line of sight intersections with the

0'
absorption region are determined. And finally, the constant
angles required by the dode, O and A, (see Fig. 1) are

calculated,

Calculation of Compton Currents and Conductivity

The two Compton currents, Jg and J; are calculated
at each r, T mesh point by numerically integrating equations
(24) ané {(25). The steﬁ size used is 0.1 times the Compton
lifetime, R/V

O.
dth oerder Runge-Kutta method (Ref 5). It should be noted

The integration itself is done using the

that both the mean free path for Compton interaction and

the Compton lifetime are exponentially scaled from sea
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level values using a 7 km scale height. However, the
Compton lifetime is not allowed to be éreater than 100
shakes, since this is the maxinmum time of interest;

Monoene:getic gammas of energy 1.5 Mev-are assumed,
The most energetic Compton electrons resulting from 1.5
Mev gémmgs have a speed of 2.88 (10)% m/sec. Therefore
vy = 2.88 (10)% n/sec. |

Since the integration on T" in equation (27) is alseo
over the Compton lifetime, this integration is carried
out simultaneously with the Compton current integrations.

Again, the 4°P

order Runge-Kutta method is used. It

is broken into two parts, one for -=» < T' < 0 and the
other for 0 < t* < 1. In this case, -2 is defined to be
the time when the first gamma ray reached the top of the
absorption region, since no secondaries can be produce&
before that time.

| The integration on T' in equations (27) is.also
broken into two parts, one for -« < 1! < 0 and the other
for 0 < 7' < 1. 1In the first case, integration is started
at t' = 0 and proceeds to T' = —(r-RMIN)/V0 in steps of
ATt = -&r/VD. In the second case, integration islstarted
at T' = 0 and proceeds to T' = T in steps of At' = Ar.

In both cases, simple step integratibn is used. That is

SE(T)dT = § (ﬁti)[f(ti)] - {64)
: all i '
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The integration over T' is carried out parallel to the
integration of (56) and (57) over v {(using space as a
pséudo retarded time} and simultaneously with the increase
in T as the space integrations are repeated for each new T.
This rather involved approach to solving gquation (27)
is necessary to save running time. A direct approach, with
separate integrations, would at least triple or_quadruple

the total running time required for execution of the code.

Integration of the Field Equations

For each T, equations (56)_énd (57) are integrated from
r = RMIN to r = RMAX in steps of Ar = (RMAX-RMIN)/NDELR
using the 4t srder Runge-Kutta method. Then the
magnitude of E is found from the two components and the
result is stored in the E array. T is increased by AT
and the whole process is repeated until T reaches TMAX,

On completion of the iterations, each ﬁember of the

E array is multiplied by RMAX/r - (equation 62), Then

target

the E array is searched to find the peak value.

Qutputs

There are several output options available in the
code. The basic output it:

1. Gamma yiéld and altitude of burse.

2. Target coordinates from ground zero.

3. Distance from burst to target.

4. A ﬁessage indicating whether the direct or the

reflected wave is being calculated.
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5. The time period covered by the calculation.

6. The time when the peak valué occured.

7. The peak value of E at the target.

8. The T and E arrays.

In addition, a linear and a log-log plot of E(T) can
be obtained. Also, a listing of the values of E at_the
bottom of the absorption région for each T can be obtained.
Either or both of these two coptions canlbe added to the

basic output.
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IV, Results and Input Parameter Variation

The output from a typical run is shown in Fig,

The E{1) calculated during the run is

The input data for this run was:

X =
Y =
yA =
HQB =
YY =
BO =
Dip Angle _
NDELR =
TMAX =

The CDC 6600 Computer required 191 sec and 33000

0 meters
0 meters
¢ meters
100 km

.001 kt

5 wb/m2

2(10)°
20°
50

20 shakes

central menory to execute this run.

The peak value of E, 6400 V/m, obtained in this

run compares favorably with Karzas-Latter's order of

shown in Fig.

8

(65a)
(65b)
(65¢)
(65d)
[65e).
{65f)
(65g)
(65h)
(651i)

words of

magnitude estimate of 104 V/m (Ref 2) from similar input

data.

In order to gain a better knowledge of the operating

capabilities of the code, the effect of varying input

parameters one at a time was studied.

parameters used was:

29
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X = 0 meters (66a)
Y = 0 meters | N {66b)
yA = ) meters (66¢)
HOB = 100 km (66d)
Y, = .001 kt : (66e)

Each of the above parameters was systematically varied
while holding the others constant. The other inputs were
held constant at the values shown in equations (65).

The results of the variation in X are shown in
Fig. 6. Since the X axis is perpendicular to the magnetic
field the symmetry about X = 0 is expected, The decrease
in peak value of E for increasing distance from ground zero
is due to the increasing distance from the burst.

The results of the variation in Y are shown in Fig. 7.
Here the peak values of E depend on the angle between
T and By, 6. When 8 = 180° (A = -70° and Y = -275 kn)
~the peak E drops to zero. The maximum peak E is skewed
toward A = 20° (8 = 90° and Y = 36 km). The naximum is
not exactly at A = 20° because oflthe increased distance
~from the burst. These characteristics are expected since
an electron moving perpendicular to the magnetic field would
feel the strongest acceleration from it while an electron
moving parallel to the magnetic field would feel no accel-
eration at all.

The results of variation in Z are shown in Fig. 8.

In this case, both the direct and the reflected waves were

calculated at each point below the top of the absorption
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region, Note that Y = 100 km for these runs. As expected,
the direct wave falls off rapidly as the target altitude
passes through the absorption region, since less of the
absorption region contributes to the wave with each increase
in altitude, The crossover point where the reflected wave
becomes the largest occured at 25 km in this case. Above
ground zero the crossover point was 29.4 km. The altitude
of the crossover point is both yield and geometry dependent,
It is necessary for the user to calculate both waves when-
ever there is any doubt which one is the largest.

The reflected wave calculation assumes 100% reflection
from the ground and no attenuation in the absorption region
or the ionosphere. These assumptions are reasonable if it
is recalled that.only the high frequency component is being

considered and that it requires at least

40 km

3 133 u sec ' (67)
3{(10) "m/sec

for the wave to leave the absorption region, reach the
earth, be reflected, and return to the absorption region.
This length of time is enough for a siénificant number of
the free electrons to recombine and reduce the effective
conductivity of the absorption region.

The results of variation in HOB are shown in Fig. 9.
For all values of HOB attempted below 60 km the code went
unstable. Infinite values for E were obtained which resulted

in abnermal terminaticen of the calculations. This is
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expected since the dburst is assumed to be distant from
the absorption region (equations 9 and 10}.

The results of variation in gamma yield are shown in
Fig; 10, For all gamma yields attempted above 60 tons.
the code went unstable, giving infinite valugs_for E.
However, the instability always occured at times ‘later
than the natural peak value of E., For example, with 80
tons of gamma yield, the natural peak occured at 1 shake
and_the instability occured at 10 shakes. By using the
natural peak value and ignoring the instability, reasonable

values for peak E were obtained up to 1 kt of gamma yield.
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V. Discussion and Recommendations

Limitations

Most of the limitations of the code are inherent in
the model upon which it is based. Approximations such
as a flat earth, a uniform magnetic field, and constant
speed Compton electrons can be improved only by changing
the model. In addition, the effect of the self generated
electromagnetic fields on the mdtion of the Compton
electrons is ignored, as is recombination of beoth primary
.and secondary electrons. The possibility of a single gamma
' ray interacting to produce more than one Compton electron
is not allowed., In the absorption region the contribution
of the non-propagating radial component of the electric
field is neglected. Also, the model is not easily adapted
to multi-group gamma transport, or to multiple burst
calculations.

The code calculates only the effect of the gamma
.rays. The user must keep in mind that X-ray generated EMP
becomes important for burstslabove 100 km,

The code does not account for the increase in altitude
of the absorption region for slant angles {angle A in
Fig., 1) greater than 60° which is indicated by Latter
and Lelevier (Ref 4). |

Since 97% of the running time of the code is used for
numerical lteration it is not practical to adapt the code

to run more than one target at a time, Two targets would
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merely double the running time, so it is simpler to just
make two runs, Typical requirements are 200 seconds
running time with 330008 words of central memory on the

CDC 6600 computer using NDELR = 50 and TMAX = 20 shakes.

Uses
The code can be used to calculate the peak value of

the E field at a target, anywhere on or above ground_ievel,

resulting from a2 nuclear burst above 60 km altitude with

a ganma yield up to 60 tons. Either the direct or the

ground reflected wave can be calculated. With special

care, bursts up to 1 kt of gamma yield can be used.

Recommendations

In the interest of accuracy, the targets should bg
located such that the slant angle, A, is between -60° and
+60°.

By accepting a much longer running time the accuracy
and hopefuliy, the stability of the code could be improved
by using a smaller step size in the integration of the
Compton curreﬁt equations. Reducing the step size from
one tenth of the Compton lifetime to one shake would
require approximately ten times as much running time as
the code presently requires. This possibility should be
investigated further to determine the optimum step size
for obtaining the best relationship between accuracy and

running time.
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Another possibility for increasing the accuracy and
stability of the code is to reduce the step size in r. The
present code has the capability of dividing the absorption
region into 500 steps in r along the line of sight, Of
course, the running time required for 500 steps is ten
times that required for 50 steps. A modification of the
code to allow more than 500 steps would increase the amount
of computer core required as well as increasing the running
time. This provides another area for investigation to
determine the best trade off point between accuracy and
running cost. |
These two possibilities could be investigated with
minor modifications to the present code. However, the
computer time required would be considerable.
In addition, there are numerous possibilities for
improvements in the model itself, Some of the more
important ones are;
Using multigroup gamma transport,
Using multigroup Compton electrons,
Allowing angular distribution of Compten electrons.
Using self consistent electromagnetic fields.
Including the low frequency components.

Each of these would require major modifications to the

present code,

42



GNE/PH/74-1

Bibliography

Kinsley, O.V. Introduction to the Electromagnetic

Pulse, Wright-Patterson AFB: Air Force Institute
of Technology, March 1971, (GNE/PH/71-4).

Karzas, W. J. and R. Latter. '"Detection of the
Electromagnetic Radiation from Nuclear Explosions
in Space', Physical Review, Vol 137, No. 5B. pages
1369-1378, March 8, 1965. (Also published as EMP
Theoretical Note 40}, ' :

Pomranning, G. C. "Early Time Air Fireball Model for
a Near-Surface Burst', DNA 3029T, March 1973,

Latter, R. and R. E. LelLevier., '"Netection of Tonization
Effects from Nuclear Explosions in Space™, Journal
of Geophysical Research, Vol. 68, No. 6, March 15, 1963.

Wylie, C. R. Jr., Advanced Engineering Mathematics,
New York: McGraw-Hill Book Co., 1966. (Third Edition),.

Lecture Notes, Electromagnetic Waves, EE 6,30, Air
Force Institute of Technology, Wright-Pattersaon AFB,
Summer, 1973. (Course taught by Maj. Carl T. Casse.)

43



GNE/PH/74-1

Appendix A

EMP Code Usert's Guide
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EMP

Code User's Guide

The code is run the same as any other Fortran Extended

program, but due to the running time it should be

converted to binary form before execution. The plotting

~ subroutine requires an on-line plotter and both linear

and log plotting library subroutines.

The input data is read in the following order:

‘Data card #1, using FORMAT (7F10.0, 215), contains:

X,Y,Z The

HOB The
{60
GAMYLB The

target coordinates in meters
height of the burst in kilometers

km < HOB)

gamma yield in kilotons

(GAMYLD < 1 kt)

BEIELD The
BANGLE The
NDELR The

the

ouT The

Earth's magnetic field in wb/mz
magnetic field dip angle in degrees
number of steps in r taken through
absorption region (50 < NDELR < 500)

ocutput control parameter

Data card #2, using FORMAT (13}, contains;

ITER The

time period covered by the iterations

in shakes (10 < ITER < 100} (ITER = TMAX)

Data card #3, using FORMAT (4F10.0), contains;

A Pomranning constant a in inverse shakes
B Pomranning constant B in inverse shakes
RN Pomranning constant N in shakes
TO Pomranning.constant Ty in shakes
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Default values are provided for BANGLE, BFIELD, and
NDELR. They are 40°, 0.00002 wb/mz, and 50 respectively.
If these default values are desired, zero must be punched
in their respective card fields.

The ground reflected wave at the target is obtained
by reading in the target altitude, Z, as a negative number,.
For any target within the absorption region, both the direct
and the ground reflected wave should he calcuiated to
determine which one is the strongest,

For values of GAMYLD Between 0.06 kilotons and 1.0
kilotons the code will most likely go unstable. This
instability occurs after the real peak has been calculated,
but the peak value printed out may not be the real peak.
Since execution is terminated when the field becomes
greater than 1E15 V/m, the array search can result in a
false peak value., In this case, the arry itself (or the
plot) can be used to determine the real peak value.

Increasing NDELR makes the step size in r through
the absorption region smaller and.the calculation becomes
more accurate. However, total running time varies directly
with changes ir NDELR. For example, using NDELR = 100
instead of NDELR = 50 will approxima;ely double the
running time required for NDELR = 50,

There are four output options pravided, Option 0
prints out the informative messages, the calculated peak
value at the target, the E array, and the T array. Option

1 adds a iinear plot of the first 20 shakes and a log-log
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plot of 100.shakes of E as a function of T at the target.
Optién_Z inﬁludes both Option 0 and Option 1 and adds a
printout of E and ¢ as a function of T at the bottom of
the absorption region. Option 3 deletes the plots from
Option 2. The last two options are primarily for debugging
siﬁce a partial printout is made for each compieted
iteration even if execution is terminated before the
iterations are completed., The first two options are
best for production runs.

The only requirements on the Pomranning constants
are N must be chesen such that equations (61) and (62)
are satisfied, all of them must be positive, and o > B.

Increasing ITER also increases the running time.
For ITER = 10 shakes, running time is approximately 180
seconds on the CDC 6600 computer. For ITER = 100 shakes,
running time is approximately 3490 séconds. A good
compromise, which gives nice looking plots, is iTER = 20
shakes with a ruﬂning time of approximately 200 seconds,

In binary form, the code requires 33000, words of

8
core on the CDC 6600 computer.
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Appendix B

EMP Code Flow Charts
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PROGRAM CONTRL

START

| READ INPUT DATA|

[CALCULATE DISIANCE FROM BURST 10 TARGEL]

¥
PRINT BURST LOCATION, TARGET
LOCATION AND DISTARCE BETWEEN THEM

L 4

[CONVERT INPUT DATA TO MKS UNIES]

[CALCULATE CYCLOTRON FREQUENCY OF ELECTRONS|

17 IS TARGET
ABOVE 49 km 2

Y

? 1S TARGET™ YES

BELOW GROUND 2

PRINT

_|REFLECTED

WAVE
MESSAGE

NC

| PRINT DIRECT WAVE MESSAGE |
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®

{CALCULATE ANGLES A AND @ !

| CALCULATE RMIN AND RMAX|

|CALL EFIELD TC GET E{T)

y
[CALCULATE FI1ELD AT TARGET]

[ 2
[ SEARCH ARRAY TO FIND PEAK VALUEI‘

PEAK VALUE OF FIELD AND THE

; : .
|PRINT THE TIME PEAK OCCURRED,
TIME AND FIELD ARRAYS

" YES

IS PLOT DESIRED ?

CALL
ELGPLT
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SUBROUTINE EFIELD
(START)

[READ TWAX]

o

[ INITALIZE ARRAYS AND CONSTANTS |

19

IINCREASE 7 |

INITIALIZE
INTERMEDIATE
CONSTANTS

29

CALL COMPTN TO GET J;. J;

i
[CALL CONDCT TO GET G |.

y
CALL RNGKUT TO GET NEW E

0

CALL RNGKUT TO GET NEW Ew

5
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UPDATE STORED VALUES FOR Ee AND §$

)

INCREASE r AND 7'

‘?

+*

IS PRINTOUT DESIRED 7

Y

)

PRINT
ERROR
MESSAGE

RETURN

PRINT T
E(r, RMAX)
o(r, RMAX)

|

NO

YES

h i
[PRINT IMAX]

52
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SUBROUTINE COMPIN

(START)

- y
[INITIALIZE CONSTANTS]

3

CALCULATE NEW J; AND NEW Jé

CALCULATE NEW PRIMARIES FOR NEGATIVE T1°

4

CALCULATE NEW PRIMARIES FOR POSITIVE t°

INCREASE 71°*

t?

Q

Is COMPTON LIFETIME = T°'

CALCULATE RATE OF
PRODUCTION OF SECONDARIES
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SUBROUTINE CONDCT

(START)

CALCULATE COLLISION FREQUENCY

CALCULATE NEW NUMBER OF SECONDARIES

PRODUCED DURING NEGATIVE 7!

CALCULATE NEW NUMBER OF SECONDARIES
PRODUCED DURING POSITIVE T° -

[CALCULATE CONDUCTIVITY |
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SUBROUTINE ELGPLT

START

PLOT E(T) ON LINEAR SCALES

CLIP SMALL VALUES OF E(T)

PRINT NEW E(T) ARRAY

PLOT E(T) ON LOG-LOG SCALES

r

{(RETURN)
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SUBROUTINE RNGKUT

(START)

4

INITIALIZE CONSTANTS

¥

|DEFINE FUNCTION |

¥

CALCULATE NEW E
USING RUNGE-KUTTA

¥

{RETURN)
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Appendix C

EMP Code Listing
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