oG FuE e

DNA-TR-86-247-V5

SOURCE REGION ELECTROMAGNETIC
EFFECTS PHENOMENA

Volume V—Analytic Solutions

for SREMP Environments

P. W. Van Alstine

L. Schlessinger

Pacific-Sierra Research Corporation
12340 Santa Monica Boulevard

Los Angeles, CA 90025-2587

25 April 1986
Technical Report
N,
O CONTRACT No. DNA 001-85-C-0235
H Approved for public release;
N distribution is unfimited.
P
< THIS WORK WAS SPONSORED BY THE DEFENSE NUCLEAR AGENCY
] UNDER RDTLE RMC CODES X326085466 V C 00003 25904D AND
Q X326085466 V C 00005 259040.
. MAY 25 a3
Prepared for H
Director
DEFENSE NUCLEAR AGENCY

Washington, DC 20305-1000




asatebi it

Destroy this report when it is no longer needed, Do not return
to sender,

PLEASE NOTIFY THE DEFENSE NUCLEAR AGENCY
ATTN: TITL, WASHINGTON, DC 20305 1000, iF YOUR
b ADDRESS IS INCORRECT, IF YOU WISH IT DELETED
4 FROM THE DISTRIBUTION LIST, OR IF THE ADDRESSEE
IS NC LONGER EMPLOYED 8Y YOUR ORGANIZATION,

{9}




UNCLASSIFIED

(TP s g ettt e TR VT
REPORT DQCUMENTATION PAGE

> APCAT TICUAITY CLAILIFCA ION Yo AATTICTIVE WARKINGS

UNCLASSIFIED
1:?Tﬁﬁﬂ???:ﬂﬁﬁ:ﬁ?ﬂig§§§ﬂ¢' T OB RISUTION/ AVALANITY OF ACPORT
M%— Approved for public release; distribution
i, JGAIIHCA NN SOEDULS d
| _N/A since Unclassified is unlinited.
"1, SERFORMING ORGAMTIATION AIPORT NUMBERLS) 7. MOMTORING ORGANIZATION ATPOAT NUMBEAL)

PSR Report 1588 DNA-TR-86-247-V5 .
{5, NAME OF PUDOIMING OROANMIATION | SYRIBOL | 5. NAME OF MOMITORING CAGANZETION

Pacific-Sierra Research O snpiicaiie) Director

oratiog Defense Nuclear Agency

I ADOAESS (Cty, Sate, e P Come) Te. ADORRIS (Oty, Stwws, ane DP Coui

12340 Santa Monica Boulevard

Los Angeles, California 90025-2587 Washington, DC 20305-1000

S AN GF FONGIG  ORCHAN u.:mm 3. PROCUREMANT (STRUMENT (OENTIMCATION NUMBER
M/TOUSIQL DNA Q01 -85-0'0235
% AGONESS (Gity, Save, :n® IP Coow) ? CI OF FUNOING NUMBERS
BN N0, [no - 0o Me.
62715K v C DH251519
V1. TITLE (MWORMIY S40UrTY G

CLMTICA IO
SOURCE REGION ELECTROMAGNETIC EFFECTS PHENOMENA
Volume V-—Analytic Selutions for SREMP Envirconments

17, PRRSOMAL AUTHONS)

Van Alstine, P. W.: SchlessingarJ_L.
118, TYM] OF REPORT 13 COVIRED 14, DATY OF ARPOAT (Yegr. Mo, S, Padll QOUNT
_Technical o o 860330 AT IR T

[7s. sussLansntasy noTATION
This work was sponsored by thel‘Defense Nuclear Agency under RDT&E RMC
1 -

Cgdes 85466 Vv ¢ 00005 25904D,
17 COtAN COOI i 1L SLUBCT TERME IRy o virg 7 Asinmiivy anal SUAIfy Dy DIOCE MuRoer)
a0 groue | suegmour | Source Region Electromagnetic Pulse (SREMP)

%E_ 1; Electromagnetic Pulse (EMP) %
19‘mmcrtuuuumw__u3\-qmmwmw werd devived.

We recently derivedh se~dimensional integral equations and integral sclutions
for the flelds gensrated &y a Compton current distribution with arbitrary time and A
gpace variations in the preseng&ﬂof conducting alr and ground with arbitrary time
variaticons in conductivity. Here vé solvedthem analytically for a mumber of im-
portant SREMP ceses which include 1) arbitrary three-dimensional currents in the
presence of infinitely cemductive ground, 2) equal air and ground conductivities,
and 3) arbitrary one-dimensional (height-.dependent) currents when the ground condug-
tivity is & constant multiple of the (time-dependent) air conductivity. Using=
particular realistic forms for the Compton current, we explicitly evaluate our -t
solutions to find the SREMP fields produced by ’chem.\

. . .- -
\ 2. h e .__',_Cg-f' L

10, ISTRIMITION/ AVALABIITY OF ASTTRALCT 11 ARSTRALT SACUNTY QASHMCATION
TuncLasumedunumio (1 1amd A mpr, UNCLASSIFIED
Ll ManE OF N !
genara B. Young S T C ey arve Coowi | 1 QLOCT TORY
DD FORM 1473, sa Man L] APR oUiTION MDY B U WD SUNGMItSN., »
AN IO SErROm are dasiens. UNCLASSIFIED
’ /‘k I \-.*(,\.‘_’:f-f



LA

L

L

(]
-4

F1ED

i1

aTY IF\CATION

UNCLASSIFIED

F TS 24




T

PREFACE

A poal of the Defense Nuclear Agency (DNA) electromagnetic pulse
phenomenology program i{s the invention and development of new, im-

proved methods to calculate source region electromagnetic pulse
{SREMP) environments, As part of the ongoing contribution of Pacific-
Sierra Research Corporation (PSR) to that program, this report sup-
plies the mathematical development of new and improved techniques to

calculate SREMP.

This report represents one area of the PSR research effort in
SREMP. This document was prepared as one volume of the multivolume
final technical report for DNA under contract DNA 001-85-C-0235. The

technical moniteor was MAJ William J. Farmer.
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SECTION 1
INTRODUCTION

Recently, using Green's function techniques, we reduced a time-
dependent SREMP problem to the solution of a set of integral equations
for tangential values of electric and magnetic fields, E, B, on the
ground surface [Van Alstine and Schlessinger, 1986]." Whea substituted
wmto formal solutions for E and B, these surface values give a
complete aolutlén to the problem. The integral equations and formal
solutions are an extenalon to three dimensions and arbitrary Compton
currents, of earlisr results using Laplace transform techniques for E
and B rields depending on only one spatial variable (height) generated
by Compton currents depending only on time, In this paper, we use the
new three-dimensicnal equations to generate exact solutiona for spe-
¢lal cases that {nelude SREMP fields that are produced in three dimen-
sions above a perfectly conducting ground, SREMP fields that are
produced in three dimensions in air and ground when air and ground
conductivities are equal but time varying, and SREMP fields in one
dimension when the time-dependent ground conductivity is a conatant
multiple of the time-dependent air conductivity. In addition, we show
how the new three-dimensional equations contain our early one-
dimensional results in two independent formsa.

First we simplify our formal solutions for B and E by recasting
them in a new form that makes clear their connection to underlying
vector potentiala. We then solve our integral equations for the case
of an Infinitely conductlive ground and use the solutiona to obtain B
and E everywhere for that case.

Next, we solve ocur integral equations for the.caae of equal but
time-dependent air and ground conductivities by using integral
properties of the Green's function. We show that the exact solution

*yan Alstine, P., and L. Schlessinger, Source Region Electro-
magnetic Effe Ertects Phenomena, Vol. 4, New Methods for Determination
of Three-Dimensional SREMP Envlronments. Pacific-Sierra Research
Corporation, Report 1538, December 1




provided by our method is that given by the full-space vector-
potential (which exists only in this case). Finally, we examine the
{one-dimensional) case in which B, E, and the current J depend only on
height (or depth) and time. We obtain the corresponding formal solu-
tions for B and E as well as the integral equations that determine
their values at the ground surface, We show that when J i3 further
restricted to depend on time only, our integral equations and solu-
tions reduce to those discovered through Laplace transform techniques
in our early work [Schlessinger, 1984).% We also find that not only
do the one-dimensional equations and solutions emerge as the remnants
of our three-dimensional equaticns and solutions for currents and
fields that only depend on height and time, but because of the struc-
ture of Maxwell's equations, the same one-dimensional equations and
solutions govern the behavior of three-dimensional fields and currents
averagaed over transverse spatial variables (x and y),

We then solve our new one-dimensjional equations for height-
dependent J for the case in which the (time-dependent) ground conduec-
tivity is a constant multiple of the (time~dependent) air
conductivity. We find an exact integral solution that is general
enough to include previously found exact solutions for the cases of
equal air and ground {time-dependent) conductivities, time-dependent
alr but infinite around conductivities, and unegqual but constant air
and ground conductlvities,

Using particular realistic forms for the Compton current, we
evaluate our solutions for the fields in three dimenslons above a
perfect conductor and the fields in one dimension when time~dependent
air and ground conductivities differ by a constant multiple. These
explicit solutions provide insight into the general behavior of SREMP
fields as well as analytic test solutions for comparison with numeri-
cal solutions for more general cases., In a subsequent report, we will
preaent the numerical results for SREMP fields obtained from these
solutions and compare them with thoae obtained by other methods.

'Schlessinger. L., Electromagnetic Effects Phenomena, Vol. 1,
Analytical Solutions for SREMP Enviromments, Pacific-Sierra Research
Corporation, Report 14837, November 1980 (subsequently published by the

Defense Nuclear Agency, Washington, DC, as DNA TR-84-397-v1),.




SECTION 2
SIMPLIFICATION OF FORMAL SOLUTION

In this section, we use vector identities to rewrite the integral
expressions for B and E + J/¢ of van Alstine and Schlessinger [19861"
in two simpler forms. The first [Eqs. (7) and (9) below] makes clear
the role played by image currents and is valid everywhere. The second
(Eqs. (11) and (12)] displays B and E + J/¢ as curls of vector quan-
tities (everywhere but on the ground surface) and thus, explicitly
demonstrates thelr divergencelessness (except at the ground). Both
possess simple limits for infinitely conductive ground.

In Van Alstine and Schiessinger {1986],T we used Green's function
techniquea to derive a formal sclution for B above and below a plane
ground surface provided only that the (time-dependent) air and ground
conductivities do not vary in space and that the displacement current
i1s negligible in comparison with the conduction current in Maxwell's
aquations with Ohmic conduction current. That solution was given by:

t
dbx’ dix’ .
BeB- foo, GOJ-(1-2kk}-(fo—;.—-GIJ)i-zfdt.n-(an).

-

{1

in which g s #(+z) and m =» -k for z 2 0 (air}, 6g is 6(-z) and a =
+k for z 5§ 0 (ground), 8§ is the integro-differential operator

*yan Alstine, P., and L. Schlessinger, Source Region Electro-
magnetic Effects Phenomena, Vol. 4, New Methods for Determination
of Three-Dimensional SREMP Enviromments, Pacific-Sierra Research
Corporation, Report 1588, December 1986.

Tibid.




9+ (nx E)E%J{;S'[(n X E)GOJ - W -d,PdS'[(n x EYH] ' (2
z'=0 zt=0

and Gg and Gy are the infinjte space scalar Green's function

3 Y-
Gy = (- ! ) exp [- L!.Etl_l_] ot - t*) (3)
2vwL

=
or

=

t
(where L= f o: and its image version parallel
t’l

GI(x, Yo 23 X', ¥', 2') = Gylx, ¥, 25 X', ¥, ~2') , (4)

respectively, In @, H i{s the time-integrated Green's function:

L{t, t*)

H = de'GO(L') - - E':}',: er-rc( ‘;'/2) 8t - t*) (5)
A 2L

where erfc is the complementary error function. A tilde over a vector
indicates that the vector's z component i{s to be reversed in sign:

'-(vx. Vyp-vz)o

The identity

(1-2kk)-(i‘xB)-ATkaz-AzkxaT-kk-(n_rxa.r)--nx‘é'.
(6)

where the subscript T denotes tangential components, allows us to
rewrite the second current term in Eq. (1) as




-(1-2kk)-( f‘-’-ﬂ-“—ca)-+vxf9§’§loli'.

Then, Eq. (1) takes the simpler form:
t

BGB--VX %‘(GJ-GIh*zfdt'ﬂ'(an). (1}

which makes c¢lear the role of the second current term as the
contribution to B of the "image cwrent,” A similar rearrangement of

the formal sclution for B +« J/g,
J 1 dlx dlx
(E+E)GB-E-vxf——-G ¥ xJ- {1 2kk} ?XI—-GV'XJ

-2 dt* @ + (n x B) ’ (8}

results in:

t

o —— .
(g+§)e-3--vxfd"" (G ¥ X J ~ G V'xJ)-Zfdt‘ﬂ'(nx B .
* g} B ua g I

(%

Since the operator @ 1s a perfect curl everywhere except on the ground

surface

9°(an)--?xfodS'anH| - (n x E)g{z)a(t - t") ,
. z'=Q
(10)

except at z = 0 we can rewrite Eqs. (7) and (9) in terms of effective
vector potentials:




(11)

1 Ux*

E+Yle =-vx L X 6. W xd -G P XD
o B uo o' 0 1

t
-2v xJ,r dtL/P¢S' n x ﬁHl . (2
z2'=0

One may not use these forms to match solutions on the ground
surface where second derivatives of H are singular. Egs. (11) and
{12) are inaccurate there; they should actually contain the §-function
subtraction included in Eq. (19) that makes their formally singular
terms equal to (the nonsingular) @, Therefore, since a major goal of
the present work is to solve the integral equations for B and E at the
ground surface and to examine behavior of the fields B and E near the
surface, we shall use the formal solutions Eqs. (7) and (9) that are
accurate there in preference to Eqs. (11) and (12},




SECTION 3
INFINITE GROUND CONDUCTIVITY CASE

In the case of an infinitely conductive ground, the formal solu-
tion for B leads to an immediate solution of the Mawxwell equations.
If the ground conductivity is infinite, the elesctric fleld vanishes
everywhere below the surface. Then continuity of the tangential
electric field forces the tangential elactric fleld to vanish at the
surface as well:

k x E -0, (13)
z=0

Then, the electric field-dependent term disappears from Eq. (7) giving
B in the air directly in terms of the Compton current:

dix* ahx*
= - ¥ x [ (Gyd 013')- 'xf*?;—l'E'J. (%)

where Tgp = 14Gp + kiGy 1s the "electric" Green's dyad, while Gp and
Gy are the scalar Dirichlet and Neumann Green's functions,
respectively. Ampere's law (B = =J/g + ¥ x B/uo} then leads directly
to a solution for E in the air:

--L. vzf“" -GIJ)-w-fg-El,‘-'-(coJ-cIa').

>

(15)
"As in Van Alstine, F., and Schlessinger, Source Region Electromagmetic
Effects Phencmena, Vol. 4, New Methods for Determination of Three-
imensiona Environments, Pacific-Sierra Research Corporation,
rt r 1 e subscripts > and < denote versicms of

Physical quantitias evalunted above and below ground, respectively.




But, in the air,

— - - ' - ' ‘6)

wo, G0 atco + §(x -~ x*)8(t - t*) (
and

v2

— - ' 1

0o GI atGI for z, z* 20, (17

>

S0 that after integration by parts in the time [and use of 3:C =
~(3*/0)3 1G],

-—jdux'(GJ +mJ)+—vf‘-’-"l-(v'c N R I

(18)

By using Iy and integrating the inner gradients in the final term of
(Eq. 18) by parts, we obtain the compact form:

- l— L . -!— dux' .
E, N fdllx r. = f GV - J . (19)
>

>

Equations (14) and (19} give the complete solution for the fieldas B
and E everywhere above an infinitely conductive gruund in terms of an
arbitrary Compton current distributed in the air.

T r———
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SECTION U
EQUAL AIR AND GROUND CONDUCTIVITY CASE

When the (time-dependent) air and ground conductivities are
equal, Green's theorem applied to all of space immediately gives the

solution for B:

t
a--vxf‘%’,‘-—co.x, (20)

and hence (through Ampere's law) E:

0 ud o' 4]
el >+

s-‘;faux-cj-v-fd—"-“—o . (21)
{when J is continucus at the ground surface). Note that in this case,
the Helmholtz theorem implies that the divergenceless vector field B
1s given both in air and ground as the curl of a single vector poten-

tial which may be taken to be:

L
A= - 4 6. (22)

Thus, since we already know {ts solution, this case serves as a check
on the validity of our integral solutions and integral equations., It
provides us with an cpportunity to use integral identities (that may
be important in the solution of the general problem} to effectively
solve the integral equation that is the heart of our method. Once we
have solved the integral equation, in the rest of this section we
shall demonstrate that our method produces the result contained in
Eqa. (20) and (21).

When we set the tranaverse components of B in air and ground as
given by Eq. (7) equal to each other at the ground surface in order to




satisfy the appropriate boundary condition (assuming the abasence of
surface currents), we obtain the integral equation:

t
L] . - - dl‘_x'

f '8 - (KXE), ..o v x f ~— Ggd . (23)

~e $-< 2=0,T

in the general case. But when oy = g¢ = g(t), the air and ground @
terms become egqual 30 that:

t

dix*
Zf de'g -« (k x E)z-o.'r - ¥x f o GOJ . (2u)
- >=< z=0,T

That is, when we explicitly write out the meanings of the surface
values of terma on the right-hand side as inherited from matching
transverse B in air and ground:

t
' *
2 dt'g + (k x E)z_o’.r
-
dix* qlix*
- (unz_.m v xf rL GOJ 11!!2_.0_ ¥x o GOJ) . (25)
> < T

Now, we are supposed to use the boundary information contajined in
Eq. {25) to determine the electric field term in Eq. (7), the formal
golution for B. There are, in fact, at least two apnd perhans three ways
to do this. The one that we shall use here (because it is tailor-mads
for the present case) uses integral identities implied by Creen's
theorem to turn Eq. (25) directly into an expression for the electric
field term in Bq. (7). A second method uses a speclal order of {n-
tegral identities, differentiations, and liaits to invert the scalar
Green's functions contained in Q. 1In one dimension this operation
determines the surface value of the tangential electric fleld, which

10




when substituted into Eq. (7) directly gives the solution for B.
However, in three dimensions, it leads to a more complicated vector
object which is itself sufficient to determine the electric field term
of £g. (7). Or, we may try even in three dimensions to solve for the
surface value of tangential E eventually using it in Eq. (T) to give
8.

Here, when we apply the integral identitles as detailed in Appen-
dix B to Eq. (25), we find that they move the Q@ term off the z = 0

surface to variable z, giving

t
, Qux* dux*
2["‘“““3%”(“‘[ = 013'>-fo = GOJC) R
T

- > <
(26}

which 12 just what we need to determine B. Substitution of this into
the transverse part of the sclution for B as given by Eq. (7) implies
that

dix! dux! dix"
B)T--'vij(GOJ)-GIT)) V)t-/."ﬂ—,--GIT)*-V’)('/'-—u,—GOJ<

> T > <
(27)
80 that
Aux?
B>T - ¥x '—0-'- GOJ . (28)
>+ T

Having found Br over all space, we could now evaluate it on the ground
surface and use the result in the z component of the integral solution
Eg. (7) to find B, over all space. However, the fact that B is diver-
genceless everywhere provides us with a method to use Eq. (28) for Br
to determine B, directly without intermedlate surface limits. That
is,

1B




9B -0 (29)

implies that

3B, =~ vT . l?.>T s (30)
a0 that
B)z- fua vT * By - (31)
z

But Eq. (28) states that By is the transverse part of the curl of a

vector fleld:

where
dlx?
A= o GOJ . (33)
bR 24

When we substitute Eq. (32) inte Eq. (31)

B>z - fdl". ?T + (¥ x l),r = fd& [VT- (VT X Azk) + VT . (kaz X AT)] ’

z 2

(34)
we find that the integrand is a perfect differential in z, so that

-

B)z.-fkaz.[?TxAT]-k'(VTxAT). (35)

2z

12




Thus, using Eq. {33) for A, this becomes

ddx’
B>z--k- ?XITGOJ . (36)
>+

Therefore, everywhere in the air B is given by

B--vxfw—c.l. (37)

»+l

Repetition of this procedure for B in the ground leads to the right-
hand side of Egq. (37) as well so that:

dux?
B--?xf—;—.—GoJ. (38)

everywhere above and below the ground surface, in agreement with the
solution £q. (20) cobtained from Green's theorem for all space as the
curl of the vector potential given by Eq. (22) or Eq. (33).

Since Eq. (38) givea B everywhere, Ampere's law (E =
-J/qg + ¥ x B/ug) determines E everywhere:

s--‘-'-l—(-vaf""" c . f"""' ) (39)
0 ua

>+ >#<

which simplifies to:

s-:‘,fd'*x'c.l-' """' < J (40)

2% 2+

{when J is continuous at the ground surface), after use of the Green's
function equatjon and integrations by parts in space and time.
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SECTION 5
REDUCTION TO ONE-DIMENSIONAL SOLUTION

In earlier work [Schlessinger, 193”].* Laplace transform tech~
niques were used to develop a version of our solution method applica-
ble to "one-dimensional™ problems in which the {three-~dimensional) B
and E fields depend only on the single spatial variable z. Such
solutions are physically important for two reasons. First, for (time-
dependent) conductivities and Compton currents of interest there may
be periods of time for which the the flelds vary in the horizontal
spatial coordinates only over distances much larger than the effective
diffusion length (or skin depth):

Dlt, t*) » 2(L)' 72 . (41)

For such periods, the one-dimensional solutions will provide good
appreximations to the true fields. Second, as we shall show, in our
case the Maxwell equations for these one~dimensional B and E fields
are ldentical in form to the partjal differential equations obeyed by
B, E, and J averaged over the transverse spatial variables. Thus,
even when Compton currents and the fields they produce are strongly
varying Iin the tranaverse variables, those fields have an average
(over the transverse varlables) behavior that is predicted by the one-
dimensional problem.

When the Compton current J and the B and E fields produced by it
depend only on z and t, each of the spatial Integrals in the formal
solution for B, £q. (7}, becomes an integral of the transverse apatial
dependence of the Green’'s function over all x and y, l.e.,

'Schleaslnger. L., Electromagnetic Effects Phenomena, Vol, 1,
Analytical Solutions for SREMP Enviromments, Pacific-Sierra Research
Corporation, Report 1437, November 1954 isubsequently published by the
Defense Nuclear Agency, Washington, DC, as DNA TR-84-397-v1).
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Bo, = - vxf:’f—' dz’ (de'Go) Jz', 1) - (de'GI):f{z'. t)

t

+ 2[ at’ (de'Go)n x E(z', t*)

- z! .O

- 99 . (fas'u)n x E(z*, t*) . (42)
z2'=0

Since the Green's function factorizes,

, . - x)?
GO - (— ! ) e L a(t - t*)
2vnl
-
_(z - z)? 5 - (xp = X"
.(-‘ )e i (‘) i Bt - t7) ,
2Vl 2Vl
(43
and since
2
*e _ (g - g

de' +( 1 )e i -1, (44)
/. 2Vl

the transverse spatial integral of G is just

ﬁs'co - Gy » i (us)

where Gy is the one-dimensional diffusion Green's function that

depends only on 2z and z', The consequences of Eq. (45) are that

/dS'GOf(z', t') = Gy, flz', ), (u6)
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1 L] ] - L] L] u
3zfds Gor(z , tY) Bszf{z s ), (u7)

and

v, -fas'[{n x B}, g =0 . (48}

Thus, in Eq. (7)

2« (nxE)« de'[n x £G,) = [n x EG,,] (u9)
z'=0 z'=0

so that Eq, (7) becomes

t

Bo, = ~ KD x L a2 6 d - 5. D s2f dtrinx ec..) i
B 2 pr o1 11 o),

{50)

Since the right-hand side of Eq. (50) is tranaverse, an immedjate
consequence ia that B, vanishes everywhere. Since J, does not con-
tripute to the current term of Eq, {50), B can be rewritten as

t
gy
Ba, = - K3, =~ d2'Gp,d dt'[n x EGy, ] . (51
B T 0 .o

-

Similarly, performing the transverse spatial integrals in the integral
equation [Eq. (23)] that results from matching transverse magnetic
fields in air and ground at z = 0 ylelds the integral equation:

t
dt' K x E 01 (20, 2'=0) = - ko, x | = azec (z-0du .

' z g o1 T
- z ° 5-¢

(52}
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Likewise, if we perform the transverse spatial integrals in the formal
solution for E + J/¢ in Eq. (9}, we find

t
J i d } .
(z . 0) 6y = 5 |- %, xf S dz'Gpka, x J 2f dt'{n x 86, ]

z'=0

{53)

which immediately implies that E; = ~J; /¢ everywhere. When we carry
out the same integrations in the integral equation that results from
matching transverse components of E as given by £q. (9) at the ground
surface, we find

t
L akxs G, (2=0, 2'e0)
uo 21 =0 o1
- R 24
J
T 1 de*
= + == U3 x‘[‘/’-—-dz'c k3 X J . (54}
2a na z a’ o1 "z o< 220

The formal solutions for B and E and the integral eguations contained
in Eqa. (51) through (54) are just those that we would have obtained
had we applied one-dimensional Green's function techniques directly to
the one-dimensional problem, They emerge here whenever the tranaverse
spatial variations of J and hence B and E are small encugh over dis-
tances on the order of the diffusion scale that the tranaverse depen-
dence of the Green's function can be integrated away.

However, there is a more general significance to these
equations. If we return to the formal solutions for B and E in the
general case as given by Eqs. (T7) and (9}, and average them over the
transverse spatlal variables using Eq. (U45) and its consequences, we
find:
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PP ———— w——— =3

—— - -

t

-- at’ '
<B>8y k3, xf Pl LA AR 2/ dt’'[n x <B>G°1]z‘-0 » (55}

and

t

< J> t g - .
(<E> v ) 6 = 03 |- *3, x‘/:/-;-,— dz'Gy K3, x <JI> 2/ dt'[n x <B>G,, ]

(56)

where < > indicates an average over transverse spatial variables.
Thase equations are identical in form to Eqs. (51) and {53}, with
transverse spatial averages of B, E, and J replacing their one-
dimensional versions. Thus, the one-dimensional solutions have a more
general physical significance as transverse spatial averages of three-
dimensional solutions. In fact, this is a direct consequence of the
structure of Maxwell's equations for our SREMP problem. When the
displacement current can be neglected, Maxwell's equations read:

L] -2

v E € (s7)
PXE+Bx~o0 (58)

V+:Bao0 (59)

VxBa= uld+ oE) . {60)

Their transverse spatial averages then become:

@
3, = £ (61)
k3, X <Ep> ¢ B> = 0 (62)
18
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az<az> =0 (6%
k3, x '<a1.> - ucd> + <B) , (64)

when ¢ = o{t) is not a function of apatial variables. Note that
Eqs. (61) through (64) are identical in form to the Maxwell egquations
[Eqs. {(57) through (60)] themselves with averaged B, E, J replacing
one dimensional versions of B, E, J that depend only on z and t.
Equations (51) through (54) are more general than those
originally obtained through the use of Laplace transform techniques
[Sehlessinger, 1984].% That work assumed that the Compton current J
depentds only on the time. 1In that situation one can perform an in-
tegration by parts in the current term of Egq. (51) 80 that one can use
the faet that 3/3zJ(t) = 0, Then Eq. (51) becomes:

' 4
Bog 2fdt [Gmn X (B . U,)L'_O . (65)

which can be rewritten using Ampere's law as:

gt
Be-:zf—(a,nc) . (66)
B pe! Lzt TO 27 =0+

Similarly, Eq. (53) becomes:

J - 2 ' :
(E » 3 )eB uof at (n X aom)z'-o . (67)

Equation (66) for B is equivalent to Eq. (16) of Schlessinger [1984)"
(after some rearrangement of the earller work). When evaluated on the

*Schlessinger, L., Electromagnetic Effects Phenomena, Vol. 1,
Analytical Solutions for SREMP Environments, Pacific-Sierra Research
Corporation, Report 1437, November 1981 (subsequently published by the
Defense Nuclear Agency, Washington, DC, as DNA TR-84-397-v1),
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_

ground surface z = 0, Eqs. (66) and {67) reduce directly to the in-
tegral relations Eqs. (17) through (20) of Schlessinger [19831." 1If
one carries out the same integration by parts and uses 3/3zJ(t} = 0 in
the integral equations [Eqs. (52) and (54)], one finds:

ge* .
o5 b wa]] oo o

>e(

and

. J J
g‘/:lt'[k x Bl Gy, (2=0, z'-o)] - u(.'_rl- _T.ﬁ) ,
’ z'e0 > % % Jze0

(69)

respectively. Equation (69) is identical to the integral equation
(Eq. (25)] of Schleasinger ([1984]),7 while continuity of transverse €
in Ampere's law:

lta xn> J l:a xB< JT(

z-o+ ug,, Iz-o % lz &rlz-O- ua, |z-0 9% lz-o
(7T0)

¥

i

converts £q. (68) into the integral equation [Eq. (24)] of Schles-
singer 12193“].t Consequently, all of the analytic and semianalytic
results of that previcus work may be obtained from the more gemeral
one-dimensional solutions and integral equations of the present work
[Eqs. (S1) through (S4)].

Schleaainger L., Electromagnetic Effects Phenomena, Vol. 1,
Analytical Solutions s _faor sﬁ Enviroments, Pacific-Sierra Research
Corporation, Report 1837, November 1984 isubuqu.ntly published by the
Defense Nuclear Agency, Washington, DC, as DNA TR-84-397-¥1),
tIbid.

*b1d.
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SECTION 6
GENERALIZED ONE-DIMENSIONAL EXACT SOLUTION

In order to obtain a solution to the Maxwell equations [Eqs. (57
through (60)] in air and ground in the general one-dimensional case,
one must firat solve one of the integral equations (e.g., Eq. (52))
for a surface flield and substitute the result int¢ an integral solu-
tion [e.g., Eq. (51)] to odtain a rield throughout space. In general,
this requires the numerical solution of the integral equation.
However, for a special class of cases that include the one-dimensional
infinite ground conductivity case, equal air and ground conductivity
case, and the constant but unequal afir and ground conductivity case,
one can use the integral equatlon [Eq. (52)] to obtain an analytic
solution for B (and hence for E). In the general case, the integral
equation for the surface value of B is:

t
dt'k x E G., (220, 2'a0)_ = - k3_ X Q. 4216, (2=0)4
| * 01 * >+ z o' n T "*
A z2t=0 -

(52)

In order to use this information to determine B, we must transform it
into the term

t
2f dt'{n x EG,, ] , (1)
z'=0

in the formal one-dimensional sclution for B, Eq. (51). We can do
this either by solving Eq. (52) for k x E|z.g by inverting

JdtGgy (z=0, z'=0)y.¢, OF by using the integral identity Eq. (126) of
Appendix B (as we did in Sec, 4) to turn the left side of Eq. (52)
into Eq. {(71). We choose the second method here., Note that the
integral identity Eq. (126) of Appendix B tells us how to perform
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integrations involving products of two Green's functions that solve
the same differential equation., But, if we multiply Eq. (52) by
either 3,015 or 3;Gp1¢, we will be forced to deal with integrals
involving both Gy and G¢. Our integral identities will apply to theae
only {ir

Go1<(z-0. Z's0) = aG°‘>(z-0. z'=0) , (72)
where a 13 a constant in space and time. This occurs when
2 {
L< = L>/u ’ (73}
which implies that

a2 - o<(t)/u>(t) = gonst. , (79}

for all t. In this case, Eq. (52) becomes:

(1 +a) dt'k x Elz' OGm>(z-O, 2"=0)

= = 1lim kd_ x g dz'G,., . J
z—+0+ z c; N>

>
+ 1lim X3 x 426 3 (15)
z 0= z °2 01<T¢ *
<

whose left aide is entirely given in terms of Gy

Before we can use our integral identities, however, since they
refer to Green's functions whose ¢ommon z argument has been made to
vanish from the same saide of the plane z = 0, we must rewrite the term
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on the right of Eq. (75) that depends on J¢ in terms of a z—+0 limit
? from above (just as we did in Appendix B):

- ael {
r lim, o K3, j:/. Goyedpe = - Lim, o, K3, x ./:/.02 42' Gy Jpciz')
gt
= - e, ﬂ‘ Soyr¢drc 72t

1 (76)

Because of the form of Eq. (76), we are faced with a further problem.
Even though we have assumed {n Eq. (72) that G. {s proporticnal to G,
when both z and z' have been set to zero, this is no longer true when
‘ as in Eq. (76) z' is variable. In fact,

_(z-20?
&L
I i C et - tn)
2/?:‘1..<

| _(z - z')zaz

1 hL)
( saqf- =——1Je alt - t*) . (17)

a/‘iT.)

L
! However, if we use Eq. (77} in Eq. (76}, we find that because the 2
b variable is eventually set to 0, G¢ may still be turned into G, by

scaling z' 380 that 2'nay = a 2'519. That is,

dt*
Lim, Lo j:[ 2'GyyJpc (=27

- [TH
dt' dz' 1 >
= -a lim___ /] 3 - e 8t - £ J, (-2%)
z =0+ o az z'( 2,—“) <

>
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_z-z2n?

b,
1 de’ 1 > ot
= 1lim dz*d |- ——}e 8(r - t*) _—
@ z-o-vjlj‘a) z ( 2/'—;‘)) "T<(u)
-zl
- Liim g, j] 21Gop»dpe (27 - 18)

The integral equation [Eq. (75}] has now become:

-

t

(1 + a)f dt'k x E‘ 0> (z-O. Z'=0)
z'-0

t - 1}

dgt’ . _ _g dae’ 2’
m,oeoe | T K3 X fj'&";' 42'Go139p _/:/. clz"':'cn>"'r<( a ) .
>

(19}

-

We multiply both sfdes by -232.0)[2..0, integrate over fdt'/uo';,. and
use the integral identities Eqs. (129) and (128) of Appendix B. The
net result i3 that

t
- (1 » a)f der ik x By, 1, .,

at ! 1 dae 2
= ko, x j:/-u' 92'Cry,dpy * g K, X _/:[o' dz GI1>JT<( a ) :
> 2 > 7

Setting z'—=-2' in the second term on the right side and dividing both

(80)

sides by (1 + a} then converts this into:
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12

1 dt
fdt,-[k X mowlz'-o e kaz X /.j-o; dz Gn>"r>

- >

v o k3. X dt’ aza..J (
all + a) "z o; 01>V 1<
<

an expression for the surface E-field term in the formal one-
dimensional solution for B, £q. (51), If we substitute Eq. (81) into
Eq. (51), we find:

dc’ at’
B, = - k3 x j‘/“’_'_ dz' Gy, Jdpy + K3, X .[j‘;-,— CEALN AN
> >
> >
2 dr’
o suraradl CH xj]‘o; dz'Gp, dos
2 dac* z!
) a) j:/’ dz's o1 >J.[.< (a ) (82)
in which the two image terms may be combined to give:
dt* (1 - a} .
B, = - k3, ””o; dz’ [Gcm 0+ ° }J‘D
>
- z'
Ta o K ” 2'Gp1 597 (E') ' (83)

for B in the air. The analogous procedure applied to B in the ground
yields:

Gll‘:

).

(81)
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dat (‘ N :7:)
B< --kaz xj]a-dz' GO1< * ----—-(1 ’1_)011( JT(
< a
2 ac* .
i womam el C x[[ o az GoyIpy(az') . (84)
-(1 + -) <
a a >

By using Ampere's law (E = =J/¢g + ¥ x B/pa), we compute the cor-
responding E fields in air and ground:

. (1 - a) 3
{ff detdz [01> T+ 11>]

E =-k

2 ¥ ' H E-:

. m.[-[dt. dz' Gyy,do, (u )} (85)
<
and
1

J (1-3)

< 1 , . a .
- [[dt'dz [Go1< 1 Gn<]"‘r<

Al =

+

2 ¥ L} 3 1
1—'(——-1— /:/’dt dz GO1<JT> (az'}} . {86)
=11 + _)
a a >

respectively. The one-dimensional cases in whlch the ground conduc-
tivity is infinite, the (time~dependent) air and ground conductivities
are equal, and the air and ground conductivities are unequal but
constant all satisfy oc/¢y, = conat. and hence produce B and E fields
given by Eqs. (83) through {(86). These solutions generalize to time
dependent ¢'s (whose ratio is conatant} and J(z,t) the solutions found
in Schlessinger ([19841* for slowly-varying conductivities and z-
independent Jt's,

'Schleaainger. L., Electromagnetic Effects Phenomena, Vol. 1,
Analytical Solutions for SREMP Enviromments, Pacific-Sierra Research
Corperation, Report 1537, November 1984 (subsequently published by the

Defense Nuclear Agency, Washington, DC, as DNA TR-84-397-v1),
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SECTION 7
EXPLICIT SOLUTIONS FOR SPECIALIZED COMPTON CURRENT DISTRIBUTIONS

In order to investigate important features of the SREMP fields
yielded by our equations, we evaluate them for two Compton current
distributions of physical interest, one in the one-dimensional situa-
tion of Sec. 6 and one in the space above an infinitely c¢onductive
ground as treated in Sec. 3. First, for the one-dimensional case in
which alr and ground conductivities differ by a constant multiple, we
choose a current pulse that exists only at one time, that is constant
in z in the air, and that is exponentially attenuated below the ground
surface:

3>6(t) z >0
J(z,t) = (87)

.
J<c(c)ez” 2<0.

When we use this J in the appropriate solution for B in air, Bq. {8%),
vwe can immediately perform the time integrals to obtain:

- L ‘ 1- ¢ J
B, - N ka_ xfdz [Go1>(t) + (1—-+—0)GI,>(U] Jy

>

z!

R S . Je @
ali + @, % "fdz Co15 ()90 (88)
<

in which L(t,t') has been evaluated by the é-function at t' = 0 so
that

C(z-z)°

- . LL{e)
Golt) = GylLle, t*N],, o = - e

2/3L(t)

(89)
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Since the air current was assumed to be constant {n z, the two terms
in Eq. (88) that depend on the alr current have integrands that are
perfect differentials and can be integrated immediately to give:

M

B« -% xJc. (z'e0 t)+“'°‘)kx§c (z'=0, t)
> o > 01> ' ) a, I y
z'
2 ; \ ak
ERCIN kx Ja3, fdz Goy,(tle™ . (90)

<

But Gr{z'=0) = Gg(z'=0) so that the integrated terms can be combined
to yleld:

-

J

2a > .
B> il K x ;; GOI)(Z =0, t)
z!
SR S— k x J 3 dz'G (t)em {91)
all + a}o) < "z 01> )
<

Now, the integral inside the z derivative in the ground current term
in Eq. (91) can he rewritten as:

_ {2z - 3'22 z!
i HL> ek
I = az'l ~ e e
< 241]..)
2 [ ( 21.) ]
z 1 2 >
= B a2t -2 0z ¢ == ] 20
, 1 ALy, ALy la
- dz* [~ —— | e e . {92)
< 2/1:1.>

When we complete the square in the argument of the z'-dependent ex-
ponential {t becomes:
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> -,
(93)
. 2!..>
ATy
80 that a change of variable § = 72 produces:
2L
>
L
z >
1 [l“ ' (ka)z z L‘>1/2
IL=-5e erfc 73 e . (94)
* 21..)

When we put Eq. {94) back into Eq. (91), carry ocut the z derivative in
the final term of Eq. (91), and combine terms, we find:

_z
WL A
. alt) a e > kxJ - k x J(
B "+ 3 > T

J‘ﬂ]..> > a
L
K x j %; >2 L 172
* Lz- -—o——i e e(m) erfe —%75 + —:—— . {95)
Ao > 2L, @

Note that as a result of the scaled structure of the sclution given by
Eq. (83), throughout the ground current term in Eq. (95) the current
attenuation length )\ appears in the combination A = gqiA. Thus,

2
.
T A A
> K 3
B)-e(t)“fa)e kx[3>-—;“+kx-sriz) , (96)
a>v’1ll.> a °<
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| o

>

172
A z by
ZL)

1

/2 A

Similar asteps for this apecial current lead to

- zi
L Fal
< J
A <
B, = 8(t) e kx}J - -—]
< t+a e<v"?l'.': > @

for B in the ground;

2
3 A - i‘z_
> 8t) _ o v s Y Ly
B «- ) - T e )=\ - 380
> > a>/ll...> a
_
Fal
adale ™ e
A 9 r—ﬂ') A
for E in the air; and
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;oz 3 T AT
¢
E< - - 55 e A s{e} - Sit) 0 ? ) & [j> - -%] Taze
< ¢ c<¢nL( a
2
-z .
J L
-1 <Te -%1-[(1+1)f(az)+(1-§)f(-az)] . (99)
< JﬂL<

for E in the ground.

We can also obtain useful solutions for the field in the space
above a perfect conductor when we choose a simple current form. For
this case, we choose a Compton current density which {s only in the
radial direction and is a shell expanding at the speed of light--that
is

Jix, t) = J(r, £)F = J.R 38lr - ct) exp (- r/i) r. {100)

oo T2

We also assume that the air conductivity is given by the simple form:

g{t) = 0y €XP (- t/to) . (101)

With this form we find that

t
0
L{t, t*) = I [1 ~ exp -(t - t')/to] . {102}

To evaluate the magnetic field in this case we use Eq. (14},
Integrating by parts and using the fact that curl {(J) = 0 we find

B-—zfd—'f'-/ds'c(kx.n . (103)
0 0 2t w0

Using the radial nature of the current in Eq. (103) we can perform the
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angular integrals to obtain

t [
2 2
J A dg! avn _ Ot 0 rpsing .
Be— Of 3/2fpdp..xp ( T )11(—&2-L—-)J(p,t).
2/ S 'k 0

(104)

where Iy is the modified Bessel function of the first order. Using
the form for J given in Eq. (100) we obtailn

2, c¢t2x2)

retxsing

r
uJ0R03 ]dx exp (t/t (x - 1) = otx/A) exp - ( 8a°y, (
1
1

A
L ]
13/2x

2ﬁct0d o

(105)

where

L =1- exp (- Eilg:—il) - LE .
0 d
We can easily obtain the solution for constant air conductivity from

Eq. (105) by setting tg = = 3o that o(t) = gg = const, We find:

ud R gLx

ofo oy 1/2 A exp (- X o, r2 . c2t2x2

e e \ T I S - B G b
0

(106}

where the argument of I1 is

( uoorcxsine )
2(1 - x) -

2d2£

)



apere's Lav (€ « - 3+ 1= ¥ x B) then tamedtately gives us the E field
eorresponding to the B field of Eq. (104) generated by a radial cure-

rent above a perfect conductor:

| 4 -
. 2 2
E--9., 1 f d;,2 fpdpJ(p. t') exp - (E—uE—L)
o Yug/n 0

. [?'pcosel - a(psinalo - r-I])] . {107)

0

where the modified Bessel functions IO and Il have argument (EE%:-.QQ).
For the current given in Eq. (100) and conductivity given in
Eq. {101}, we obtain the electric field corresponding to B in

EQQ (105):

3 I
J.R Y t
B--—?—-g—é{r'-ct)e Fe'o
L
3 1
ud R 2 2.2 2
+ 200 (E)/—%exp(%‘—(x-1)-ct§)exp-(r;-2-z,i—x-)
touw L 0 4dcg
0 0
A A r
. [r cosBIo -8 (sinaIO alrr 11)] . {108)
where IO and I1 have argument (r—q-g-%lﬂ). We can obtain the E-field
2d 78

solution for constant conductivity corresponding to ac by setting t —=w

]
ao that ¢(t) = 9% in Eq. (108). We find
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3 r
J.R - =
Bc .- 2 g §(r - ct)e g
Ool"
3 142 1
. oo (‘f_’g ) dx exp {- ) oup |- woy (2 4 $232)
X 572 S¥P ) P t -
Wy t o (1 - x)
A A r
. [rcoseIo - 8(sinely - =1, )] . (109)

ug,.rexaing
where I0 ang I1 have arguments ).

20 - %)
In a subsequent paper, we will present numerical results obtained

from all of these solutions along vwith a comparfson of those numerical
results with solutjons obtained by other methods.
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APPENDIX A
CHECK OF INFINITE CONDUCTIVITY SOLUTION

We now check explicitly that our procedure has actually manufac-
tured a solution to the Maxwell's equations and boundary conditions
appropriate to the infinite ground conductivity case. First, the fact
that Eq. (14) gives B as a perfect curl implies that B is divergence-
less everywhere above the ground surface:

dix?®
V'B:,--V-?xf-;-r(GoJ-GI:ﬂ-O. (10)
>

Then, the properties of the Green's functions in Eq. {14) show im-
mediately that B solves the diffusion equation {(with time-dependent
conductivity and appropriate socurce) everywhere above the ground:

(:; - 3t)B> --¥x /d';’," [5(: - x')8(t - £1)d - 6(x - X6t - t')li']
>
>

J J J
= - ¥x |6(z) = -~ 6(=2) = ]a=-¥X — for z>0.
[ % % ] %
(111)

Since E given by Eqs. {18) or (19) was obtained from B through
Ampere's law, E and B given by Eqs. (19) and (14} satisfy

J ¥VxB
E * o. = ug ' (ma)

by construction. As a consequence, B and B are also related by

VXE «Vx L—fdux'[co.'l - o, = vxf‘lgl (3,659 - 2,691 = - B, .
5
> >

(113}

35




Finally, we may calculate the divergence of Eq. (19) to identify the
electric charge density that accompanies our flelds. We find:

V. -l aux'v-{c.l-cﬁ']-z d"“cv'oa
E) o) uc> o'

>
- 1—- ' 1 . - VZ ﬂ.’.‘_' L
ofduxcv J w)/o, Gy ¥* + J
> >
7? dhx! J
- - — — L) - - L
(31-. uc))f G V' - J v l (114)

everywhere above the ground. [This agrees with the divergencelessness
of the total current (Ohmic plus Compton) implied by Ampere's law in
our approximation.]

We must now check that the boundary behavior of E and B given by
Eq2. (19) and (%4) is consistent with our problem. First, Eq. (19)
implies that tangential E is given by:

v
¢ B - = fam o i - I Ll vy, (115)
! a, DT uo, o
> >
ﬁ. Then the fact that both the Dirichlet Green's function and its tangen-

tial gradient vanish as z—-0Q implies that

F E.rl 0 (116)
zZw»

E,, on the other hand, is given by a superpoaition of the Neumann
Green's function and the normal derivative of the Dirichlet Green's
function:
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3
-» l- 1 H - -E- d-& * .
Ez U)fdhx GNJZ U(’)‘/’ G v J ., (M7

neither of which vanishes on the surface. In fact,

EI .2 ’-/aux-c.i--’—f‘“‘" 3,6, V' * 4 . (118)
z g 0z uo
Zz=0 > > 7m0

> >

30 that at the ground surface E is entirely vertical with double its
free~-space value. Since E vanishes everywhere in the ground, this

implies a surface charge density

Z-ee( faux'ca fﬁ-"-'-ac v -J) (119)
UU>

z=0
at the ground surface.

Equation (14) implies that B, depends only on the tangential
derivatives of the Dirichlet Green's function:

Bz-k vxf (GOJ GI.'i‘)-k-vTxf Gydy - {120)

>

Consequently,

B =0, (121)

Since B is Jjust =¥ x E 30 that B vanishes everywhere in the ground,
Eq. (120} implies that our B, is continuous at the ground surface so
that B is divergenceless everywhere, Flnally, the transverse part of
B [according to Eq. (1)) is just:
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dix’ dlx*
B.l. - - vT X f—;— GNJzk kaz X f"‘;:"' GDJT ' {(122)
a0 that at the surface

dix* dux*
n_l.l -- 2(9.!. xf-?;— Gol, % + k3, x f —— Ggds , 12y
z=0 z=0

> >

or

1
B,rl --2(vxf‘1§-’§- GOJ) ] (124)
2=0 > 2=0,T

Thus, B is entirely transverse with doudble its free-space value at the
ground surface. Since B vanishes everywhere below the ground surface,
this implies a surface current at the ground surface given by:

2 qux®
K= ukx(?x/o, GOJ) . (125)
2=0

>
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APPENDIX B
SOLUTION OF INTEGRAL EQUATION USING INTEGRAL !DENTITIES

In Appendix A of Van Alstine and Schlessinger [19861,* we applied
Green's theorem to two Green'sa functions to obtain the integral iden-
tity:

Gy(x, ) » - 2‘/‘“0,[08' [32,00(1, x' )G, (x', x")] = (126)

2'=0

The subscript z's=0* indicates that the surface integral is to be
viewed as the boundary of a volume integral in the upper half space
z' 2 0, B8y differentiating this fdentity and using the facts that
Gg = Goi(x - x*) while Gy = Gr{x - ¥*), we find:

ﬁbl(x. ) - - WG (x, x)
fuo,fds [a WG (x, x)WG(x*, x")] . en
+
z'=(

which becomes

VG (x, ") = -2 fw,de' [az,GO(x, x')v'Go(x'. x")] .

Z'=0
(128)

Because on the surface z"=0 Gp = Gy and 3,G1 = 3,60, Eqs. {126) and
(128) become

*van Alstine, P., and L. Schlessinger, Source Region Electro-
magnetic Effects Phenomena, ¥ol. 4, New Methods for Determination
of Three-Dimensional SREMP Envir‘oments. Pacific-Sierra Research
Corporation, Report 1585, December 1986.
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at? , ,
Gy (2, ¥°) et - -2 fods [az,cotx, X' )G,(x", x")] .
Z'=0 ,z%"=0
(129)
and
dg* ,
Yo, (x. ) e -zf ;c-ffas [az,co(:. VG, (xt, x“)] .
z'a( ,z"=0
(130)
respectively.

Now, Eqa. (129) and (130) show that integration over time and
surface of 3;1Gglzrap”, with either Gy or its gradient evaluated with
both of its spatial arguments on the surface, essentially reproduces
the Green's function or ita gradient with {ts first spatial argument
moved off the surface. Such an operation would take the R term in the
integral equation Eq. (25) (whose Gresn's functions are fully
evaluated on the aurface) and turn it directly intc the @ term in
Eq. (7) (whose first spatial argument roams over the upper half-
space). If we write Eq. (25) out in full, we see that

t

2 Lim | fdt'de'kx B(x')G,(x, x')l
20 2'=0

A A -de'k x B(x'}H{x, x')I
Z2'=(

' *
e- |1 ‘foﬂ’f—'-coa-nm _Vx-[?“—f-co.t
-0 ¢ Z -0 9

> <

3¢ that we need to deal with two further complications if we are to
use our integral identities. The first is that ouwr integral iden-
titlies involve two Green's functions both of which are boundary values
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from above while the second term on the right-hand side of Eq. (131)
containa a Green's function evaluated on the surface from below.
Therefore, we rewrite it:

1
1. q,f‘&x_c.l-um ﬁ'xfd"’,‘ 6,3, (x)
9 I}
z2-+0

<
~ 1 -~
- lim jxf Ll o g T . (132)
o Yo'
Z -0 5

Then, Eq. (131) becomes:

t

2lm f dt'de'k x E(x")Gy(x, x')|
z0 J Z'=0

- 9.9% +f d5'k x E(x')H(x, x')
TT z'=0

L] —~ t
== | 1im vxfci’:_c.]-llm vxfd’leJ(A-.) )
- 0 [1] *
zZ—-0 20

7 b
(133)

Secondly, we have to check that H in the second term on the left-hand
sfde of £q. (133) obeys its own version of Eq. (129):

-2fno' fds' [3 18 (xy xDHCX, x7, v, t")] .
Z'=() -4k 4]
dt? dene
- - 2[ 'To'_".'fds' [32|Go(!. x')f uu”, G (! ' x" t!’ t“')]
t‘"

f ?m.,. Golx, 2", ¢, t‘")| = H(x, x", t, t") . (3w
e Z" =0 z"=0

+*
2'ad ,2"=0

LA




In short, if one inspects the identities [Egqs. (126), {128), (129),
(13G), (t34)], one seea that the net result of multiplying each term
in £q. (133) by -2 3;09(z"", 2z)|ze0* and integrating over Sdt/ugcSds
will be to shift the firat z argument of all terms from z=0* to vari-
able z and to change WGy into ¥G; and ¥y into ¥Gy on the right-hand
side, That is, performing this operation on Eq. (133) yields:

t

' . - - g—wx—' - d-—“z-'- t
2 f at'g - (k x B, fo o Gpdy - 9 xf —— G J (X))
T

- > >
(135)

in which z is variable. Setting z'-—+-z' in the second term on the
right-hand side of Eq. (13%), we seée that:

t
_ dix’ - glx* s
2 f dt'g « (k x E)T = ?x/ = GI"> v o uo.l<(x )
- > < T
(136)

Then, the transverse part of the identity Eq. (6) tells us that

(R x B), » - (Ax Bl (137)

50 that the lirst term on the right-hand side becomes:

b 1Y

o dix’ _- dix’
(v xf = GIJ>) - ( v x/ 6,7, ) . (138)
T T

> >

Thus, Eq. (135) may be rewritten a»

t
Yyt L)
2/dt'ﬂf{kx8).r-- (vxf%’;‘-r;r'i;*vxf %f—co.l() .
- > < T
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