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PREFACE

A goal of the Defense Nuclear Agency (DNA) electromagnetic pulse

phenomenology program is the invention and development of new, im-

proved methods to calculate source region electromagnetic pulse

(SREMP) environments. As part of the ongoing contribution of Pacific-

Sierra Research Corporation (PSR) to that program, this report sup-

plies the mathematical development of new and improved techniques to

calculate SREMP.

This report represents one area of the PSR research effort in

SREMP. This document was prepared as one volume of the multivolume

final technical report for DNA under contract DNA 001-85-C-0235. The

technical monitor was MAJ William J. Farmer.
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SECTION 1

INTRODUCTION

Recently, using Green's function techniques, we reduced a time-

dependent SREMP problem to the solution of a set of integral equations

for tangential values of electric and magnetic fields, E, B, on the

ground surface [Van Alstine and Schlessinger, 1986J.* Whe.i substituted

into formal solutions for Z and B, these surface values give a

complete solution to the problem. The integral equations and formal

solutions are an extension to three dimensions and arbitrary Compton

currents, of earlier results using Laplace transform techniques for E

and B fields depending on only one spatial variable (height) generated

by Compton currents depending only on time. In this paper, we use the

new three-dimensional equations to generate exact solutions for spe-

cial cases that include SREMP fields that are produced in three dimen-

sions above a perfectly conducting ground, SREMP fields that are

produced in three dimensions in air and ground when air and ground

conductivities are equal but time varying, and SREMP fields in one

dimension when the time-dependent ground conductivity is a constant

multiple of the time-dependent air conductivity. In addition, we show

how the new three-dimensional equations contain our early one-

dimensional results in two independent forms.

First we simplify our formal solutions for B and E by recasting

them in a new form that makes clear their connection to underlying

vector potentials. We then solve our integral equations for the case

of an infinitely conductive ground and use the solutions to obtain B

and E everywhere for that case.

Next, we solve our integral equations for the case of equal but

time-dependent air and ground conductivities by using integral

properties of the Green's function. We show that the exact solution

*Van Alstine, P., and L. Schlessinger, Source Region Electro-
magnetic Effects Phenomena, Vol. 4, New Methods for Determination
of Three-Dimensional SREMP Environments, Pacific-Sierra Research
Corporation, Report 1588, December 1986.



provided by our method is that given by the full-space vector-

potential (which exists only in this case). Finally, we examine the

(one-dimensional) case in which B, E, and the current J depend only on

height (or depth) and time. We obtain the corresponding formal solu-

tions for B and E as well as the integral equations that determine

their values at the ground surface. We show that when J is further

restricted to depend on time only, our integral equations and solu-

tions reduce to those discovered through Laplace transform techniques

in our early work [Schlessinger, 1984].* We also find that not only

do the one-dimensional equations and solutions emerge as the remnants

of our three-dimensional equations and solutions for currents and

fields that only depend on height and time, but because of the struc-

ture of Maxwell's equations, the same one-dimensional equations and

solutions govern the behavior of three-dimensional fields and currents

averaged over transverse spatial variables (x and y).

We then solve our new one-dimensional equations for height-

dependent J for the case in which the (time-dependent) ground conduc-

tivity is a constant multiple of the (time-dependent) air

conductivity. We find an exact integral solution that is general

enough to include previously found exact solutions for the cases of

equal air and ground (time-dependent) conductivities, time-dependent

air but infinite ground conductivities, and unequal but constant air

and ground conductivities.

Using particular realistic forms for the Compton current, we

evaluate our solutions for the fields in three dimensions above a

perfect conductor and the fields in one dimension when time-dependent

air and ground conductivities differ by a constant multiple. These

explicit solutions provide insight into the general behavior of SREMP

fields as well as analytic test solutions for comparison with numeri-

cal solutions for more general cases. In a subsequent report, we will

present the numerical results for SREMP fields obtained from these

solutions and compare them with those obtained by other methods.

*Schlessinger, L., Electromagnetic Effects Phenomena, Vol. 1,
Analytical Solutions for SREMP Environments, Pacific-Sierra Research
Corporation, Report 1I37, November 1984 (subsequently published by the
Defense Nuclear Agency, Washington, DC, as DNA TR-84-397-V1).
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SECTION 2

SIMPLIFICATION OF FORMAL SOLUTION

In this section, we use vector identities to rewrite the integral

expressions for B and K + J/o of Van Alstine and Schlessinger [1986)*

in two simpler forms. The first [Eqs. (7) and (9) below] makes clear

the role played by image currents and is valid everywhere. The second

[Eqs. (11) and (12)] displays B and K - J/a as curls of vector quan-

tities (everywhere but on the ground surface) and thus, explicitly

demonstrates their divergencelessness (except at the ground). Both

possess simple limits for infinitely conductive ground.

In Van Alstine and Schlessinger [1986],t we used Green's function

techniques to derive a formal solution for B above and below a plane

ground surface provided only that the (time-dependent) air and ground

conductivities do not vary in space and that the displacement current

is negligible in comparison with the conduction current in Maxwell's

equations with Ohmic conduction current. That solution was given by:

Be - xO - (1 - 2kk) • +- GJ dt'g• (n x E)
B f' of' ('

(1)

in which OB is e(+z) and n = -k for z Z 0 (air), OB is 6(-z) and n =

+k for z S 0 (ground), 0 is the integro-differential operator

*Van Alstine, P., and L. Schlessinger, Source Region Electro-
magnetic Effects Phenomena, Vol. 4, New Methods for Determination
of Three-Dimensional SREMP Environments, Pacific-Sierra Research
Corporation, Report 1588, December 19b6.
tIbid.
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a*(n x E) =afdStE(n x E) Go I0) - VV -f S[nx E)HJ ,I- (2)
z'-Oz'-O0

and G0 and G, are the infinite space scalar Green's function

- exp [ _x')2] e(t - t') (3)GL

where L - d-) and its image version parallel

G I(X, y, z; x', y', z') - Go(X, y, z; x', y', -z') , (4)

respectively. In 0, H is the time-integrated Green's function:

L(t, t')
H- - -L erfc 1r (t - t') (5)

fd' 0  L \w (2L 112

where erfc is the complementary error function. A tilde over a vector

indicates that the vector's z component is to be reversed in sign:

S- ( x, Vy - Vz)

The identity

(I - 2kk) • (T x B) - AT x kBz - Azk x BT - kk (A4 x BT) -- A x ,

(6)

where the subscript T denotes tangential components, allows us to

rewrite the second current term in Eq. (1) as

4



-(1- 2kk) •V xj -d-- GJ- + Vx --- GX y.

Then, Eq. (1) takes the simpler form:

BeB - - V x T (GoJ - G -)+ 2 dt' 9 • (n x E) , (7)
B f

which makes clear the role of the second current term as the

contribution to B of the "image current." A similar rearrangement of

the formal solution for E + J/a,

(E + B - V [ x[ d--4- G. V' x J - (I - 2kk) • V x]--•- GIV' x J

- 2f4 dt' Q • (n x B], (8)

results in:

(. ) e - V x/dw ' (Go V' x J - GI V' x J) - 2 dt, 0 • (n x B]

(9)

Since the operator 9 is a perfect curl everywhere except on the ground

surface

9 * (n x E) V x V x]-dSI n x EHJxZ,. - (n x E)S(z)e(t - t')

(10)

except at z - 0 we can rewrite Eqs. (7) and (9) in terms of effective

vector potentials:

5



BO - x d (G 0J - G + 2 V fdt IfdS I n xEHz
(11)

E q B - Vx (Go[.fG V x J - GI V' x J)

-e2 V x dtfdS' n x I 1 -o] (12)

One may not use these forms to match solutions on the ground

surface where second derivatives of H are singular. Eqs. (11) and

(12) are inaccurate there; they should actually contain the 6-function

subtraction included in Eq. (10) that makes their formally singular

terms equal to (the nonsingular) Q. Therefore, since a major goal of

the present work is to solve the integral equations for B and E at the

ground surface and to examine behavior of the fields B and E near the

surface, we shall use the formal solutions Eqs. (7) and (9) that are

accurate there in preference to Eqs. (11) and (12).



SECTION 3

INFINITE GROUND CONDUCTIVITY CASE

In the case of an infinitely conductive ground, the formal solu-

tion for B leads to an immediate solution of the Maxwell equations.

If the ground conductivity is infinite, the electric field vanishes

everywhere below the surface. Then continuity of the tangential

electric field forces the tangential electric field to vanish at the

surface as well:

k x E1  - 0 . (13)

Then, the electric field-dependent term disappears from Eq. (7) giving

B in the air directly in terms of the Campton current:

- v x j 4' (G, J - G - V xfL4- rE r 1 (1)

where FE - ITGD + kkGN is the "electric" Green's dyad, while GD and

GN are the scalar Dirichlet and Neumann Green's functions,

respectively. Ampere's law (E - -J/o + V x B/ua) then leads directly

to a solution for 9 in the air:

, + 1 [72f d •x, L'Go - Gi~ V" f " (G0 J - GrX)•

(15)

*As in Van Alstine, P., and Schlessinger, Source Region Electromagnetic
Effects Phenomena, Vol. 4, New Methods for Determination of Three-
Dimensional SREM? Environments, Pacific-Sierra Research Corporation,
Report 150, December 1986, the subscripts > and < denote versions of
physical quantities evaluated above and below ground, respectively.

7



But, in the air,

2 0 G G + (x- z')(t- t') (16)
PC > 0 tO0

and

p2

SGI a G for z, z' Z 0 (17)
lao> I I

so that after integration by parts in the time [and use of 3tG =

1 .!'d14x'
E L I d 4xI(G + kG ÷ + ._ V d --- (V'G * J - V'GI

> D> xD T N z PaC> f - 0

(18)

By using rE and integrating the inner gradients in the final term of

(Eq. 18) by parts, we obtain the compact form:

d>' f r fd4x V' • J (19)
E> >J (i D

Equations (14) and (19) give the complete solution for the fields B

and E everywhere above an infinitely conductive gruund in terms of an

arbitrary Compton current distributed in the air.



SECTION 4

EQUAL AIR AND GROUND CONDUCTIVITY CASE

When the (time-dependent) air and ground conductivities are

equal, Green's theorem applied to all of space immediately gives the

solution for B:

B- - Vx f 4'- G0J , (20)

and hence (through Ampere's law) E:

S.1 ( d *x Vo - d4x'

E dJx' G j - - -- Go V' * J (21)

(when J is continuous at the ground surface). Note that in this case,

the Helmholtz theorem implies that the divergenceless vector field B

is given both in air and ground as the curl of a single vector poten-

tial which may be taken to be:

f- - -- 0 G0 J . (22)

>+<

Thus, since we already know its solution, this case serves as a check

on the validity of our integral solutions and integral equations. It

provides us with an opportunity to use integral identities (that may

be important in the solution of the general problem) to effectively

solve the integral equation that is the heart of our method. Once we

have solved the integral equation, in the rest of this section we

shall demonstrate that our method produces the result contained in

Eqs. (20) and (21).

When we set the transverse components of B in air and ground as

given by Eq. (7) equal to each other at the ground surface in order to

9



satisfy the appropriate boundary condition (assuming the absence of

surface currents). we obtain the integral equation:

t dt'2 * (k x E) - x Of' d~ G0J T (23)
-u>- >.( zOT-p

in the general case. But when a> a < -a(t), the air and ground 2

terms become equal so that:

tt

2/ dt'l2 * (k x E)z.o - x L~ I OJ]a (2~4)

That is, when we explicitly write out the meanings of the surface

values of terms on the right-hand side as inherited fron matching

transverse a in air and ground:

2 ./ dt'2 • ( k x E) z OT

.lim V x 7x G-J-lim- Vxj -~- GO . (25)

Now, we are supposed to use the boundary Information contained in

Eq. (25) to determine the electric field term In Eq. (7), the formal

solution for B. naere are, in fact, at least two and perhaps three ways

to do this. The one that we shall use here (because it is tailor-made
for the present case) Uses integral identities implied by Green's
theorem to turn Eq. (25) directly into an expression for the electric

field term in Eq. (7). A second method uses a special order of in-

tegral identities, differentiations, and limits to invert the scalar

Green's functions contained in 9. In one dimension this operation

determines the surface value of the tangential electric field, which

10



when substituted into Eq. (7) directly gives the solution for B.

However, in three dimensions, it leads to a more complicated vector

object which is itself sufficient to determine the electric field term

of Eq. (7). Or, we may try even in three dimensions to solve for the

surface value of tangential E eventually using it in Eq. (7) to give

B.

Here, when we apply the integral identities as detailed in Appen-

dix B to Eq. (25), we find that they move the 9 term off the z - 0

surface to variable z, giving

It
2 fdt'g (k x E) V G I + V x -- GOJ<

(26)

which is just what we need to determine B. Substitution of this into

the transverse part of the solution for B as given by Eq. (7) implies

that

B -T V xf V;7J (G0J> - G 3>) - [f xI > o G 0 J <

>T T

(27)

so that

BT L V x df~x' Goij (28)

Having found Er over all space, we could now evaluate it on the ground

surface and use the result in the z component of the integral solution

Eq. (7) to find Bz over all space. However, the fact that B is diver-

genceless everywhere provides us with a method to use Eq. (28) for BT

to determine Bz directly without intermediate surface limits. That

is,

11



V B> - 0 (29)

implies that

DzB>z -- VT • B>T , (30)

so that

B>Z- jdý VT • B>T (31)

z

But Eq. (28) states that Sr is the transverse part of the curl of a

vector field:

B>T - (V x A)T , (32)

where

A - - -f - OJ (33)

>+<

When we substitute Eq. (32) into Eq. (31)

B>z d VT (V x A)T P IVdT* (VT x Azk) + VT N (kz x AT

z z
( 3 4 )

we find that the integrand is a perfect differential in z, so that

"> -> f kz . [VT x AT] -k " (VTx AT) (35)

z

12



Thus, using Eq. (33) for A, this becomes

B> -- k V x J 4- GJ ) (36)

Therefore, everywhere in the air B is given by

B>- - V x d G J (37)
>÷<

Repetition of this procedure for B in the ground leads to the right-

hand side of Eq. (37) as well so that:

B -- V x f 4x. G0 J , (38)
>+<

everywhere above and below the ground surface, in agreement with the

solution Eq. (20) obtained from Green's theorem for all space as the

curl of the vector potential given by Eq. (22) or Eq. (33).

Since Eq. (38) gives B everywhere, Ampere's law (E -

-J/o + V x B/uo) determines E everywhere:

E - V f d"ix' GoJ + VV - -' G0J , (39)

which simplifies to:

S"I / d14x' G0 -v--f~ ' o _
K .--d•- j- o f d 'GV' • J (40)

>+< >+<

(when J is continuous at the ground surface), after use of the Green's

function equation and integrations by parts in space and time.

13



SECTION 5

REDUCTION TO ONE-DIMENSIONAL SOLUTION

In earlier work [Schlessinger, 1983],* Laplace transform tech-
niques were used to develop a version of our solution method applica-
ble to "one-dimensional" problems in which the (three-dimensional) B
and E fields depend only on the single spatial variable z. Such
solutions are physically important for two reasons. First, for (time-
dependent) conductivities and Compton currents of interest there may
be periods of time for which the the fields vary in the horizontal
spatial coordinates only over distances much larger than the effective

diffusion length (or skin depth):

/2D(t, t') - 2(0)1"2 (41)

For such periods, the one-dimensional solutions will provide good
approximations to the true fields. Second, as we shall show, in our
case the Maxwell equations for these one-dimensional B and E fields
are identical in form to the partial differential equations obeyed by
B, E, and J averaged over the transverse spatial variables. Thus,
even when Compton currents and the fields they produce are strongly
varying in the transverse variables, those fields have an average
(over the transverse variables) behavior that is predicted by the one-

dimensional problem.

When the Compton current J and the 8 and E fields produced by it
depend only on z and t, each of the spatial integrals in the formal
solution for B, Eq. (7), becomes an integral of the transverse spatial

dependence of the Green's function over all x and y, i.e.,

Schlessinger, L., Electromagnetic Effects Phenomena, Vol. 1,
Analytical Solutions for SREMP Environments, Pacific-Sierra Research
Corporation, Report 1437, November 198±4 (subsequently published by the
Defense Nuclear Agency, Washington, DC, as DNA TR-84-397-Vl).

14



BeB - - x - dz' fdS'G) J(z', t') - (fdS'GI '(z', t'

+ 2f dt'z 
idS' 1

- V.-[j SH n x E(z'1 tl)]j . (42)

Since the Green's function factorizes,

(x - x ')

2•2

(z - z')
2  2 ( T - ')2

1 e 4L I1i eLt
- - e e 8(t - t'2) ,

(43)

and since

I- - ( ____ ,)

f dE' + ( )e-2 4L i '(44)

the transverse spatial integral of G is just

dS'G - G01 , (45)

where GI is the one-dimensional diffusion Green's function that

depends only on z and z'. The consequences of Eq. (45) are that

dS'Go0f(Z t') - Go01f(z' t') ,1(46)
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a z dS'Gof(Z', t') - z G 1f(z', t')(47)

and

VVT " JdS'[(n x E)Hz,.o -0 . (48)

Thus, in Eq. (7)

9 • (n x E) - fdS'in x EG 0 - [n x EG 01 (49)J z'0 '01

so that Eq. (7) becomes

rffdt ' IrBe = - kaz xii- dz'(G 01J - U IIJ) + 2 dtrin x EG 01
B-z jz' 1 i01

(50)

Since the right-hand side of Eq. (50) is transverse, an immediate

consequence is that Bz vanishes everywhere. Since Jz does not con-

tribute to the current term of Eq. (50), B can be rewritten as

t
Be - - It' dz'G J + 2 dt'[n x EG0 1 ] (51)

.1 z'-0

Similarly, performing the transverse spatial integrals in the integral

equation [Eq. (23)] that results from matching transverse magnetic

fields in air and ground at z = 0 yields the integral equation:

t

dt' k x E G0 1 (z-O, z'-O)>< - - k3 x dz'IG (ZO)

f-0- 0 + f0

(52)
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Likewise, if we perform the transverse spatial integrals in the formal

solution for E + J/o in Eq. (9), we find

E + L[- k Jz xf t' z' z' -0

(53)

which immediately implies that Ez - -Jz /a everywhere. When we carry

out the same integrations in the integral equation that results from

matching transverse components of E as given by Eq. (9) at the ground

surface, we find

t1 Sdt'k 

x Bi z ,0G o1(Z-O, z '-0) >1<

PT  f dtLkkDxxjd-7-dz'G k3 x 'J-<(54)
"2a JJ ff ' >-<0z-o

The formal solutions for B and E and the integral equations contained

in Eqs. (51) through ( 5 4 ) are just those that we would have obtained

had we applied one-dimensional Green's function techniques directly to

the one-dimensional problem. They emerge here whenever the transverse

spatial variations of J and hence B and E are small enough over dis-

tances on the order of the diffusion scale that the transverse depen-

dence of the Green's function can be integrated away.

However, there is a more general significance to these

equations. If we return to the formal solutions for B and E in the

general case as given by Eqs. (7) and (9), and average them over the

transverse spatial variables using Eq. (45) and its consequences, we

find:
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. x,/ fx dt, dzG, <T> + 2 dt'[n x <E>G0 1 ] (55)

and

<E> + B kaz x tdz'G lk3z, x <J> - 2 dt'[n x <B>G0 1

Dlz Z '-®z'-O]

(56)

where < > indicates an average over transverse spatial variables.

These equations are identical in form to Eqs. (51) and (53), with

transverse spatial averages of B, E, and J replacing their one-

dimensional versions. Thus, the one-dimensional solutions have a more
general physical significance as transverse spatial averages of three-

dimensional solutions. In fact, this is a direct consequence of the
structure of Maxwell's equations for our SREMP problem. When the

displacement current can be neglected, Maxwell's equations read:

V E - (57)E

V x E B - 0 (58)

V B - 0 (59)

V x B - U(J + oE) . (60)

Their transverse spatial averages then become:

a z<Ez> - (61)

k3z x <ET> + <B> - 0 (62)
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3z<Bz> - 0 (63)

k3z x <BT> - P(<J> + a<E>) , (64)

when a - a(t) is not a function of spatial variables. Note that

Eqs. (61) through (64) are identical in form to the Maxwell equations

[Eqs. (57) through (60)] themselves with averaged B, E, J replacing

one dimensional versions of B, E, J that depend only on z and t.

Equations (51) through (54) are more general than those

originally obtained through the use of Laplace transform techniques

[Schlessinger, 1984].* That work assumed that the Compton current J

depends only on the time. In that situation one can perform an in-

tegration by parts in the current term of Eq. (51) so that one can use

the fact that 3/3zJ(t) - 0. Then Eq. (51) becomes:

BeB 2~fdtl [G n ( E !L7) (65)

which can be rewritten using Ampere's law as:

Be 2f'( (66)
B U ±2Juo' zBTG011)z,=O0

Similarly, Eq. (53) becomes:

(E + J ) . _ •J dt,(n x GO)z,.02 (67)

Equation (66) for B is equivalent to Eq. (16) of Schlessinger [1984]*

(after some rearrangement of the earlier work). When evaluated on the

* Schlessinger, L., Electromagnetic Effects Phenomena, Vol. 1,

Analytical Solutions for SREMP Environments, Pacific-Sierra Research
Corporation, Report 1437, November 1984 (subsequently published by the
Defense Nuclear Agency, Washington, DC, as DNA TR-84-397-VI).
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ground surface z - 0, Eqs. (66) and (67) reduce directly to the in-

tegral relations Eqs. (17) through (20) of Schlessinger [1984).* If

one carries out the Same integration by parts and uses 3/3zJ(t) - 0 in

the integral equations [Eqs. (52) and (514)], one finds:

J dt' aL (z-, z'-O )1 = 0 , (68)

ZI-0• 01+<

and

(69)

respectively. Equation (69) is identical to the integral equation

[Eq. (25)] of Schlessinger [1 9 8 •1],t while continuity of transverse E

in Ampere's law:

k3Iz x B LT>I xT k z x B< JT<I

(70)

converts Eq. (68) into the integral equation [Eq. (24)] of Schles-

singer [1984].t Consequently, all of the analytic and semianalytic

results of that previous work may be obtained from the more general

one-dimensional solutions and integral equations of the present work

[Eqs. (51) through (54)].

Schlessinger, L., Electromagnetic Effects Phenomena, Vol. 1,
Analytical Solutions for SREMP Environments, Pacific-Sierra Research
Corporation, Report 1437, November 1984 (subsequently published by the
Defense Nuclear Agency, Washington, DC, as DNA TR-84-397-Vl).
tlbid.

tIbid.
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SECTION 6

GENERALIZED ONE-DIMENSIONAL EXACT SOLUTION

In order to obtain a solution to the Maxwell equations [Eqs. (57

through (60)] in air and ground in the general one-dimensional case,

one must first solve one of the integral equations [e.g., Eq. (52)]

for a surface field and substitute the result into an integral solu-

tion [e.g., Eq. (51)] to obtain a field throughout space. In general,

this requires the numerical solution of the integral equation.

However, for a special class of cases that include the one-dimensional

infinite ground conductivity case, equal air and ground conductivity

case, and the constant but unequal air and ground conductivity case,

one can use the integral equation [Eq. (52)] to obtain an analytic

solution for B (and hence for 9). In the general case, the integral

equation for the surface value of 9 is:

tf I f dt

dt'k x E' G0 1 (z-0, z'-O)>< = -k x d- dz'G0 1 (z-0)J.

(52)

In order to use this information to determine B, we must transform it

into the term

t

2 f dt'[n x EG0 1]z,.0 (71)

in the formal one-dimensional solution for B, Eq. (51). We can do

this either by solving Eq. (52) for k x EIz.0 by inverting

.fdt'G 0 1 (z-O, z'-O)>+<, or by using the integral identity Eq. (126) of

Appendix B (as we did in Sec. 4) to turn the left side of Eq. (52)

into Eq. (71). We choose the second method here. Note that the

integral identity Eq. (126) of Appendix B tells us how to perform
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integrations involving products of two Green's functions that solve
the same differential equation. But, if we multiply Eq. (52) by

either azGo0> or azGo1<, we will be forced to deal with integrals

involving both G> and G<. Our integral identities will apply to these

only if

G 1<(z-O, z'-O) - G01>(z-O, z'-O) , (72)

where a is a constant in space and time. This occurs when

L< - L >/a2 (73)

which implies that

-2 < (t)/a>(t) = const. , (74)

for all t. In this case, Eq. (52) becomes:

t

(1 a) f dt'k x E1  G0 1 >(z-O, z'-0)

"- lim k3 x L,-- dz'G0l>JT>z-.O+ z f ; 0>T

f<t dt'
+ limz0 kaz x Lt-'-o dz'G01<T (75)

whose left side is entirely given in terms of G>.

Before we can use our integral identities, however, since they
refer to Green's functions whose common z argument has been made to
vanish from the same side of the plane z - 0, we must rewrite the term
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on the right of Eq. (75) that depends on J< in terms of a z-0 limit

from above (just as we did in Appendix B):

lim ka x --f - dz'GoJ = - lrn ka x f t-- dz'G J Cz')
z-0- z 01<(T< z-00+ Z of I1< T<

- k3n xf dt I dz'G (-z,)z-O+ z I-,y' 01<JT<

(76)

Because of the form of Eq. (76), we are faced with a further problem.

Even though we have assumed in Eq. (72) that G< is proportional to G>

when both z and z' have been set to zero, this is no longer true when

as in Eq. (76) z' is variable. In fact,

2
-(z - z')(Z ) ZI

G O1< e 2L•< O(t - t' )

(z - z')2a2

- e L> t - t') (77)

However, if we use Eq. (77) in Eq. (76), we find that because the z

variable is eventually set to 0, G< may still be turned into G> by

scaling z' so that Z'new a Z''old. That is,

limz0 azJ o dz'G0 JT(-z')

Z-0+Z ff dt dz' I<

-- limz + 1 Z- z 2a Z, e O(t t') JT<(-z')
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[-(z - I2

1 _f> dt' dz' I 4L> 0-z ' t J <a lamz -L > -tt

I limzrn a -t- dz'G 0 1 >J • (78)z z-0. z 01>a> :

The integral equation [Eq. (75)] has now become:

(1 + C)f dt'k x E1z-O G0 1>(z=O, z,-0)
-U

k ft dt' (z"- lir"0 - k3 x J -. d zG i>Jr> - " x Xj> dz'G01>JT< < I
(79)

We multiply both sides by -23ZG>Iz,.O, integrate over fdt'/lo'>, and

use the integral Identities Eqs. (129) and (128) of Appendix B. The

net result is that

t

(1 + a)Jf dt'J[ x EGo 1 >2 z,=O

ft dt' dzG i +1 ka ffdt ' d'

Z , of I1> T> aL z JJo, d i>JT .(La
ff>>

(80)

Setting z'- -z' in the second term on the right side and dividing both

sides by (0 + a) then converts this into:
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Sdt'Ek x EG 1 1 kJ x ff dt'Gd' >J
f01> z'-0 "1 + a z G>o, Ii> T>

i k~X /'dt'

+ 1 ~ x~ -f dtwdGJ z
LI, ;>, 01 >

(81)

an expression for the surface E-field term in the formal one-

dimensional solution for B, Eq. (51). If we substitute Eq. (81) into

Eq. (51), we find:

B> k x dt z'G>T> + kz x =7" dz'Gi1 >JT>

ka x7 ffdz' jT

2 kaxff > , z'G

(1 + a) z I1>JT>

- 2 _ k x f'L dz'G J s- (82)
a(i + a) z Jx 0d 1 > T<

in which the two image terms may be combined to give:

B> -- ka x df- -- dz' [Go> + (1 - a GI1>JT>

-k3 x -dz'G (83)

a (1 + a ) z x 01><d Z(8)>JT <

for B in the air. The analogous procedure applied to B in the ground

yields:
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S dt dz '

2B kk x -x - dZ'GGo<<JTr>(QZ') (8G4)

O(_ +) >

By using Ampere's law (E - -Jla + V x B/la), we compute the cor-

responding E fields in air and ground:

E> k > 1 dt'dz' G0 (1 + a) G
a > G > If 1i> -

-2 a( 2 ) dtIdzI G01>JT< (85)

and

-Jz - irr i <

- k -< + dt'dz' G 1)E<< ff> s 0 1<+Id T
2 + ]• dt'dz I (Gz') , (86)

respectively. The one-dimensional cases in which the ground conduc-

tivity is infinite, the (time-dependent) air and ground conductivities

are equal, and the air and ground conductivities are unequal but

constant all satisfy a</a> - const. and hence produce B and E fields

given by Eqs. (83) through (86). These solutions generalize to time

dependent a's (whose ratio is constant) and J(z,t) the solutions found

in Schlessinger [1984]1 for slowly-varying conductivities and z-

independent J's.

*Schlessinger, L., Electromagnetic Effects Phenomena, Vol. 1,
Analytical Solutions for SREMP Environments, Pacific-Sierra Research
Corporation, Report 14q7, November 198'4 (subsequently published by the
Defense Nuclear Agency, Washington, DC, as DNA TR-84-397-VI).
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SECTION 7

EXPLICIT SOLUTIONS FOR SPECIALIZED COMPTON CURRENT DISTRIBUTIONS

In order to investigate important features of the SREMP fields

yielded by our equations, we evaluate them for two Compton current

distributions of physical interest, one in the one-dimensional situa-

tion of Sec. 6 and one in the space above an infinitely conductive

ground as treated in See. 3. First, for the one-dimensional case in

which air and ground conductivities differ by a constant multiple, we

choose a current pulse that exists only at one time, that is constant

in z in the air, and that is exponentially attenuated below the ground

surface:

J>5(t) z > 0

J(z,t) = (87)
S< 6(tez/ z < 0

When we use this J in the appropriate solution for B in air, Eq. (83),

we can immediately perform the time integrals to obtain:

.- 1- >a(t 1 -a ) I^ ( )B >- > z xfdz' + 1-+ a J>

2 --(1 + 0 c> k xz x dz'G (t)J<e (88)

in which L(t,t') has been evaluated by the 6-function at t' = 0 so

that

(z,- z') 2

G0 =G0(L(t, t))1 e 4L(t) (89)
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Since the air current was assumed to be constant in z, the two terms

in Eq. (88) that depend on the air current have integrands that are

perfect differentials and can be integrated immediately to give:

A

k A 0 - a) iB x J G (ZI-0, t) + k x L G Wmo' t)
> a > > 01> 0 + a) a > I1>

zo
2

OL(l + k x J< Iz dzIG (t)e' (90)
> f 01>

But Gj(z'mO) - GOW-O) so that the integrated terms can be combined

to yield:

B> 2a k x L Gol>(z'-O, t)+ 
>

ZI
2

(I(I + a TO > k x J < a, z dzIG 01> (t)e' (91)
f

Now, the integral inside the z derivative in the ground current term

in Eq. (91) can be rewritten as:

(z - ZI) 2 z?

I fdz,(_ 1 e 4L> e aA

2/w-L
< >

2 1 [z,2 'L>) Z']- S.- - 2 (z + -

fd z' e IIL> e 4L> X CL (92)
2A7L-

When we complete the square in the argument of the V-dependent ex-

ponential it becomes:
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2/> 22L>
2 I 2 Oz

1 )e > e dz] e

(93)

sothat a change of variable -I/ prd es

2L>

I - L (A•)2] >1/2 (1
I - ( a erfc z ÷ .(94)

S(2L>I/2 )a
When we put Eq. (94) back into Eq. (91), carry out the z derivative in

the final term of Eq. (91), and combine terms, we find:

2
4L> A J

e(t) a eA k x J> <
B1> -I+a) - > k a

> a

z L >

k x kxJ< Xa (Ac)2 z L(>
2 a> e e erfc 1• + 7, (95)

la > (2L >a

Note that as a result of the scaled structure of the solution given by

Eq. (83), throughout the ground current term in Eq. (95) the current

attenuation length A appears in the combination A - aA. Thus,

2<f ) (6

B> - a(t) (I+ci)(o>/*V kX [> - ]+ k x a< (96)

229a /I-T -I a-



where

z L>

flz) a= eA e erfa z + >1/2)(2L >1/2 A

Similar steps for this special current lead to

2
Z

8< -8(t) G <,• kxl -. 5]-
4L A

÷ k a< 2"• ÷ t( •-) - - -• )( ?

f'or B in Uie ground;

A A

^

k x t - i +(t ) f 1 f(m) (7

for g in the air; and
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2-

< e 8(t) c ei

(<V'1rL< ci

2z

iJ<T e (I I If(ciz) f I - f(-z) (99)

for E in the ground.

We can also obtain useful solutions for the field in the space

above a perfect conductor when we choose a simple current form. For

this case, we choose a Compton current density which is only in the

radial direction and is a shell expanding at the speed of light--that

is

J(x, t) = J(r, t)r R 2 exp (- nt) r (100)
r,

We also assume that the air conductivity is given by the simple form:

G(t) - a0 exp (- t/t 0 ) (101)

With this form we find that

to

L(t, t') - o [1 - exp -(t - t')/tO] (102)

To evaluate the magnetic field in this case we use Eq. (14).

Integrating by parts and using the fact that curl (J) = 0 we find

Bft fJ dS'Go(k x J)L (103)

Using the radial nature of the current in Eq. (103) we can perform the
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angular integrals to obtain

t 0 2

B- dt' f Pd r + (L 2  i 1 (rpsin) J(, ti)
B . f aL 3 /2  Jp - p4L I 2

-5 0
(1014)

where I, is the modified Bessel function of the first order. Using

the form for J given in Eq. (100) we obtain

2 + 2 2 x2 )
U±J 0R 0 1 dx exp (t/t 0(x - 1) - ctx/A) exp _ (r 4d 2  / cxsn

Z- of3/2 irtin
2A/,ct-d 2. x 1( 2d 2.

where

d2 t0
d iCo(t)

t 1 exp t(lt- X)) L

We can easily obtain the solution for constant air conductivity from

Eq. (105) by setting to . so that a(t) -=a - con.it. We find:

B jR3~ ( ) ~112 Aexp (- [a U~Or 2  c 2t2x 2 ]c 2V'1Tct 7- 0 x( - X) 3 /2  4t ~ (1 -X) ]
(106)

where the argument of I is

(2(1 - )
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Ampere's Law (E - - + V x B) then immediately gives us the E field
a Ila

corresponding to the B field of Eq. (104) generated by a radial cur-

rent above a perfect conductor:

J •4r1 • d't

E = dt' pdpJ(p, t') exp - 2 Lp 2 )
4arwf O 5/2 f4

•[pcoseI 0 - O(psineI 0 - rI 1 )] , (107)

where the modified Bessel functions I0 and I1 have argument (r2sin "

For the current given in Eq. (100) and conductivity given in

Eq. (101), we obtain the electric field corresponding to B in

Eq. (105):

3  r t
JoR0 x A t0

E - 6(r - ct)e r e.

PJoR03 d x 2 +222
t102R (l0 1  5,2 exp (0 (x -1)- ct •)exp -. ( *r4~c~t~x2

+ t2 V exp t )x

r cosel0 - 0 (sinOI0  1,) (108)

where I0 and I1 have argument( rctxsine). We can obtain the E-field

solution for constant conductivity corresponding to Bc by setting to--

so that a(t) a a0 in Eq. (108). We find
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JR 3  r

E (r -ct)e r
30 r2

MjR3 )1/2 1PO(2 2.22+J0R0  (JoO dx exp - o exp r( + c t xlI

~4rv t 1 - X)5e/2 (1 - X)
0

rcoseI0  a (sineI0 - 1 j (109)• cosI 0 -etx

where I aand I~ have arguments 11l00rcxsinO)

In a subsequent paper, we will present numerical results obtained

from all of these solutions along with a comparison of those numerical

results with solutions obtained by other methods.
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APPENDIX A

CHECK OF INFINITE CONDUCTIVITY SOLUTION

We now check explicitly that our procedure has actually manufac-

tured a solution to the Maxwell's equations and boundary conditions

appropriate to the infinite ground conductivity case. First, the fact

that Eq. (14) gives B as a perfect curl implies that B is divergence-

less everywhere above the ground surface:

V B> - V x > -- (GoJ - J-) 0 . (110)

Then, the properties of the Green's functions in Eq. (14) show im-

mediately that B solves the diffusion equation (with time-dependent

conductivity and appropriate source) everywhere above the ground:

- > t B> - - v x EC - x')s(t -t') - 6r - 7)6(t t--3..

1- x [e(z) - e(-z) L V x for z > 0

•, ('111)

Since K given by Eqs. (18) or (19) was obtained from B through

Ampere's law, E and B given by Eqs. (19) and (14) satisfy

J VxB
110>- - (112)

a > Ila

by construction. As a consequence, E and B are also related by

V x E> = , x [a G,[Ga G/d1x
E>d-G 1 J = V x L- [atGoJ - atG] - - >

> f>

(113)
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Finally, we may calculate the divergence of Eq. (19) to identify the

electric charge density that accompanies our fields. We find:

V • E> >d4x' V • [Go! - f 2 4x-' GD VI .

Ifd4x. GDV. -d GD V ' -J

a l > of D

" " ft -o> G V* - V - , (114)

everywhere above the ground. [This agrees with the divergencelessness

of the total current (Ohmic plus Compton) implied by Ampere's law in

our approximation.]

We must now check that the boundary behavior of E and B given by

Eqs. (19) and (14) is consistent with our problem. First, Eq. (19)

implies that tangential E is given by:

ET 1 1O /*4 f di4x__.'
S1 dx' GD T- V- I o' GD V - J (115)

T > fJT M li> > a'

Then the fact that both the Dirichlet Green's function and its tangen-

tial gradient vanish as z-.O implies that

ETI - 0 . (116)

Ez, on the other hand, is given by a superposition of the Neumann

Green's function and the normal derivative of the Dirichlet Green's

function:
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EZ= > 1 d4x GNJ•z > Z- 4x' GD V d - (117)

neither of which vanishes on the surface. In fact,

E . 2x, Gz 1 f dx I O G V, • J , (118)
ZIZO >\ fd G0  J O a , z

so that at the ground surface E is entirely vertical with double its

free-space value. Since E vanishes everywhere in the ground, this

implies a surface charge density

1 2(-f d4x' GOJz - 1J 4x' G V' J (119)
E -a > 

z=O

at the ground surface.

Equation (14) implies that Bz depends only on the tangential

derivatives of the Dirichlet Green's function:

d4x' f dx'B z - k • V x f a--,- (Go0J - G IJ-) - k • VT x G- GD JT . (120)

Consequently,

Bz LO 0 (121)

Since B is just -V x E so that B vanishes everywhere in the ground,

Eq. (120) implies that our Bz is continuous at the ground surface so

that B is divergenceless everywhere. Finally, the transverse part of

B [according to Eq. (14)] is just:
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d4x' f• j4x'

BT - V T x J od-f GNJzk - kBcz x f - GDJT , (122)

so that at the surface

fx L4x'-• x d4x•' Go(2
TI -O - 2 VT X o1' GoJZk + k3a x f. L OJT) (123)

or

BT -2 V x -2- G J (124)BTZ-O > a 0 z-O,T

Thus, B is entirely transverse with double its free-space value at the

ground surface. Since B vanishes everywhere below the ground surface,

this implies a surface current at the ground surface given by:

"K 2k x V x] o'4 - GoJ) (125)
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APPENDIX B

SOLUTION OF INTEGRAL EQUATION USING INTEGRAL 1DENTITIES

In Appendix A of Van Alstine and Schlessinger [1986],' we applied

Green's theorem to two Green's functions to obtain the integral iden-

tity:

GCx I " (X- 2 fS PadtP SI [a, z x1 x)G 0Cx' , xvi)] (126)

The subscript z'-O÷ indicates that the surface integral is to be

viewed as the boundary of a volume integral in the upper half space

z' Z 0. By differentiating this identity and using the facts that

Go - GO(x - x') while G, - Gi(x - i"), we find:

VGI(x, x") -- V"GI(X, X")

-2 it/dS [,Go,(x,, x ,)V"G (xo , x,] (127)

which becomes

VGI(x, x") - -2 I -.- , 1 dS'f o Oc f S a ,Go(X, x ')V 'Go(X ', x "v)l ,O

(128)

Because on the surface z"-O GI - Go and az G I - 9zGO, Eqs. (126) and

(128) become

Van Alstine, P., and L. Schlessinger, Source Region Electro-
magnetic Effects Phenomena, Vol. 4, New Methods for Determination
of Three-Dimensional SREMP Environments, Pacific-Sierra Research
Corporation, Report 1588, December 1986.
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Go(x'")1 - -2 f .i, sd, 3zarG(X, V)G (x z')
I z" WO 0' 0 0+O ,z"=O

(129)

and

Z'-O ,z""O

(130)

respectively.

Now, Eqs. (129) and (130) show that integration over time and

surface of azGolz,.O÷, with either G0 or its gradient evaluated with

both of its spatial arguments on the surface, essentially reproduces
the Green's function or its gradient with its first spatial argument

moved off the surface. Such an operation would take the 0 term in the

integral equation Eq. (25) (whose Green's functions are fully
evaluated on the surface) and turn it directly into the 0 term in

Eq. (7) (whose first spatial argument roams over the upper half-

space). If we write Eq. (25) out in full, we see that

2 lim tfdt'ffdS' k x E(x')G 0 (x, z')

- VTVT .JdS 'k x E(x')H(x, z Z -

l I lim Vxf o5 0- lim V x f at GOJ

so that we need to deal with two further complications If we are to
use our integral identities. The first is that our integral iden-

tities involve two Green's functions both of which are boundary values
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from above while the second term on the right-hand side of Eq. (131)

contains a Green's function evaluated on the surface from below.

Therefore, we rewrite it:

urnm V x d4x' <GJlj x d4xGJ (X' )
lim V 7-GO -lim +•x I<x')

-r V+ x -- G 0 J<() (132)

Then, Eq. (131) becomes:

2 lim f dt'fdS'k x E(x')Go(x, x')z

-VTVT dsk x E(x')H(x, 1')Iz'-O]

- V d4x' dxG' - lim Sxf G J (71)

(133)

Secondly, we have to check that H in the second term on the left-hand

side of Eq. (133) obeys its own version of Eq. (129):

-2f,-tfdS S' z,Go(x, X')H(x', x"l, t', t")
palZ )I 0 o,Z"-O

2 - 2 fdS ,Go(, x') " Go(X'G x", t', t"')]

t" Z'-O+,z"-0

- d---"t GO(X, X", t, t",) -H(x, x", t, t") . (134)
t"z"-O 1Z"-O

S. . . I i . .. I I4 1•d



In short, if one inspects the identities [Eqs. (126), (128), (129).

(130), (134)], one sees that the net result of multiplying each term

in Eq. (133) by -2 azGO(z"', Z)Iz.o+ and integrating overfdt/uofdS

will be to shift the first z argument of all terms from z-O+ to vari-

able z and to change VGO into CG, and VGO into VGI on the right-hand

side. That is, performing this operation on Eq. (133) yields-

2 dt'a • (k x E)T - - x [ OGJ> - V x d " G J< ( 1')
-I > IT

(135)

in which z is variable. Setting z' -- z' in the second term on the

right-hand side of Eq. (135), we see that:

2 dt'Q - (k x E)T - - [ ~xdf G J - V x -. GOJJx(')f T-f o > fTf

(136)

Then, the transverse part of the identity Eq. (6) tells us that

(i x B)T (A x I T (137)

so that the first term on the right-hand side becomes:

'-. (138)

(xx T ~' I
>>)T >T

Thus, Eq. (135) may be rewritten as

t

2 fdt'2 (k x E + V x L- G I [ V x
)T +" a > f j T

(139)
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