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1. Introduction

In this note we present improvements in the methods for treating the

Compton current and the air conductivity, for use in E31P calculations.

Specifically, we shall give:

(a) a method of treating the effict of multiple scattering, as well

as slowing down, of the Compton recoil electrons;

(b) a method of treating the time lag between the production of the

primary ionization and of the total ionization;

(c) a discussion of the problem of equilibration of the free elec-

trons, from the initiai ionization spectrum to the spectrum

appropriate to the instantaneous value of E/p

2. Slowing Down of Compton Recoil Electrons

T1he energy loss of relativistic electrons in moving through matter is

given by Bethe's formula (Ref. 1); per unit track length, it is

44

d 111 2TrNZe
T -s- MY2 [1 , )

where

~l Z (mc '. _1)y 2 _1)J - 2-1 n2 )

(2)
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In these formulae, N is the density of atoms, Z the atomic number,

e , m and v the electron charge, rest mass, and velocity, c is the

velocity of light, and

1 C (3)

For air we take the effective atomic number

z 7.2 (4)

and the mean excitation potential I (Ref. I) to be

1 80.5 ev (5)

U , solving the equations of motion of a Compton recoil electron, one

can take account of the energy loss by imagining that the electron experi-

ences a force directed opposite to v , of magnitude given by the right-

hand side of Eq. (1). This procedure, however, does not yet take into

account the multiple scattering of the Compton electrons, which has the

following effect. A beam of electrons, directed initially in the x-direction,

is greatly broadened in angle by the scattering, so that the electrons spend

a lot of their energy moving in directions oblique to the x-direction. Eq.U
(1) is correct for the energy loss per element of length of the actual trajec-

tory of an iadividual electron, but its use with ds replaced by dx will

overestimate the average distance electrons will travel in the x-direction

before stopping.

Tn the past, we have taken account of the multiple scattering by not-

ing that, experimentally, the mean range of electrons in the Mev region is

about 2/3 of the total (or "extreme") range. Wie have therefore simply

multiplied the drag force (right-hand side of Eq. (1)) by a factor 3/2.

This procedure, however, gives a wTong distribution of ionization along the

path of the Compton electron. The ionization per unit length is proportional

A



dw
to - d , and is important because it determines the air conductivity.

Now at the beginning of a Compton electron track, the multiple scatteringdW
has not yet had much effect, and multiplying - by 3/2 overestimates
the ionization per unit length. Similarly, the ionization density is

underestimated near the end of the range. In EUlP from high altitude bursts,
the peakA electric field tends to come when the Compton electrons are near

the beginning of their range; an overestimate of air conductivity by a

factor 3/2 may lead to an underestimate of the peak electric field by the

same factor.

Obviously, we need a treatment in which the multiple scattering is

allowed to build up along the trajectory.

3. Multiple Scattering of Compton Eleetrons

We shall use the simple form of multiple sz-attering theory due to Williams

(Ref. 2), which will be adequate for our purpose. According to this theory,

the mean squared angle - of an initially collimated beam increases with

distance traveled as

d'e2"  87rNZ 2e'
d - y2M2.v 2] (6)

where

3[2] = £n (7)

Here 0min is the minimum angle of scattering, below which the scattered

angular distribution falls substantially below that given by the Rutherford

formulae. For scattering by neutral atoms, as in our case, 8min  is deter-

mined by the screening of -he nuclear charge by the atomic electrons. For

the Fermi-Thomas atomic model, lott and Massey (Ref. 2) give

0.0153 Z(8)rain By - " 8
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Then

[21 = 1,n 1/yiL - (9)

in Eq's. (6) and (7) ;,e have departed slightly from standard theory,

in which 0 is the mean square angle in only the gaussian part of the

angular distribut'on. Then the argument of the logarithm in Eq. (7)

.omes (0h/Omin) , where 01 depends on s , and is the angle below

which the scattering is nultiple. However, we are using O- as the mean

square angle of the entire angular distribution, in which case the argument

(2/0n is correct (Ref. 3).

Eq. (6) is strictly correct only when 0- is small, where successive

scattering angles add linearly. Consider, however, the obliquity factor

Cos o lO

This factor relates the differential track length ds to the distance dx

in the direction of initial collimation,

ds = T dx (11)

For small ,

e21+ - , (12)

so that Eq. (6) becomes

d.- 4r[ [21 (13)

ds ji-V~i

For large mean angles of scattering, this equation has the virtue that near

6



the end of the range, where n will become infinite, the mean cos 6

will become zero, according to Eq. (10); thus all correlation to the

initial direction is lost. This is a desirable result, whereas having

- become infinite (as results from Eq. (6)) is not. We shall there-

fore use Eq. (13) instead of Eq. (6). and note that n starts at unity

for an initially collimated beam.

4. M4ean Ran , of a Collimated Beam

Suppose that we have a monoenergetic beam, collimated in the x

direction, entering a slab of material. Then the equations for the change

in kinetic enegv W and obliquity factor q (we drop the bar on r) are

d- fQn (14)

dx

-- -g(W)ri , (ls)

where

f(w) 4 .NZ2ey 2  (16)
(mC 2 ) 2 (y 2 .1) 2  [2] ,

g(W) 2'NZe Y (17)

Dividing Eq. (14) by Eq. (15) and using

Wv (y-I) MC2  ,(

we find

dn 2Z 2}dy (19)

Now, it turns out that the ratio

71
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r (20)
j

is very nearly independent of energy W or y . For example, for air (see

Eq's (4) and (5)) we find:

_ r

51 Key 1.1 0.262

255 Key 1.5 0.266

511 Key 2.0 0.269

1.02 Mev 3.0 0.270

1.53 .lev 4.0 0.271

Clearly, for our purposes, F can be taken as constant. We shall use the

values,

r 0.269 in air

(21)

r~ 0.276 in aluminum
= 150ev for aluminum)

With the approximation of constant r , Eq. (19) can be integrated

directly, with the result,

= 1+ zr n(¥I) (22)tYO+l) Of -1) (2

Here Yo is the value of y for the initial energy of the electrons in

the beam.

On using Eq. (22) in Eq. (15), one can integrate (numerically) to

find the mean range including the effect of multiple scattering. We have

done this for aluminum, and also have calculated the extreme range, which

is obtained by omitting the factor n in Eq. (15). In Fig. (1) we compare

our results with data of Marshall and Ward (Ref. 4) on the transmission of

electrons through foils of aluminum. In the figure, the solid curves

8
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represent M--rshall's and Ward's measurements cf the fraction of initial

electrons transmitted as a function of thickness )f the fil, for various

starting electron energies from 0.32 to 1.69 iev. The s(uW-tF p!Iz-ed on

Lie abscissa are at the extreme ranges computed by 1-s ubiri the PXT'.,-

formula di-e.:tly; the agreement with the end points of the -xperim.ntal

curves is very good. Th . circles placed on the experimental curves are at

the mean ranges computed by - using Eq's (1S) and (22). Our theory woid

be well verified if the circles also represented the mean abscissae of the

experimental curves. lie consider the agreement between theory and data to

be quite adequate for our purposes.

In Sec. 5 we shall combine this treatment of energy loss and multiple

scattering with equations of motion for the electrons in the presence of

fields. Before turning to that task, we record in Table i the mean and

extreme ranges of electrons in air, as computed from the above theory.

since these results are of general interest.

Table i

Ranges of Electrons in Air

Kinetic Energy Mean Range Fit to Extreme Range

W, 14ev Rm, gm/cm 2  Mean Range Re, 9./cm2

0.05 0.0030 0.0029 0.0045

0.1 0.0096 0.0100 0.0157

0.2 0.030 0.032 0.050

0.5 0.120 0.125 0.198

1.0 0.304 0.308 0.489

2.0 0.711 0.695 1.085

5.0 2.01 1.89 2.78

It may be useful to note that the mean range can be fitted, over the

energy range in the table, by the simple formula

0.40 W2
RP(gm/cm2 ) = 0.40- K23)0. 30-W

Table I also contains values computed from this formula.

2.0



5. Equations of Motion in Presence of Electromagnetic Fields

We shall now write equations of motion for the Compton recoil electrons,

in the presence of electric and magnetic fields E and B * and taking -

account of energy loss and multiple scattering.

If no account were taken of multiple scattering, but energy loss were

included, the equations of motion hould be

. Ie 'E+ v_× g 1) (24)dtI c f

dr
=t v (25)

here g() is the energy loss function defined by Eq. (17), r is the

position of the electron, t is the time, and p is the electron momentum.

The relations between p and v and W are

4;2

v - p , P = c - mc 2  (26)
c 2.p2+m2c2

Integratiosi of Eq's (24) and (25) would lead to precise trajectories, with

the electrons being deflected by the fields and slowed by the energy loss

term.

Nov; consider the multiple scattering. Since we have already accounted

for energy loss, it is necessary only to aczount for the fluctuations in

the angles of p , without additional changes in the magnitude of p
.

The result of the many small and random changes 6P (with 6p .- p) will

be to make a probability distribution in p . 7he value of p calculated

from Eq. (24), without scattering, will be the central p of this distribu-

tion, and the distribution will tend to be over momenta having the same

magnitude, as in Fig. (2a), although the electric field t can le.id to

situations as illustrated in Fig. (2b).

13.
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,,,distribution distribution

'-central 'P
central p /

(a) (b)

Figure 2. Relation of central momentum p
to distribution at a given time.

Therefore, we retain Eq's (24) and (26) for the central momentum.
The average velocity of the distribution, however, is less than the value
appropriate.to p , by the mean obliquity factor n . Therefore, we
replace Eq. (25) by

dr Vd-t = (27 )

4.

where v is calculat"t from Eq. (26) from the central momentum. The equa-
tion for In is taken over from Eq. (14),

dnd v f(IV) (28)

Repeating, we take the equations of motion to be Eq's (24), (26), (27)
and (28). The Comptcn current contributed by an electron (really a distribu-
tion of electrons) is taken as

-t e Id~re 7

.. (29)~c dt c r

The time rate of production of ion pairs by the electron is taken as

12



d -= v g(W)/w (30)

where w, is the energy expended per i, pair.

Notice that the equations of motion chosen above reduce to Eq's (14)

and (15) in the absence of fields. For in that case the central momentum

will remain in the x direction if initially pointed in it, and from Eq.

(27) we find,

dx = -dt . (31)

Thus Eq. (28) immediately reduces to Eq. (14). Further, since

d - v • , (32)

Eq. (24) reduces to Eq. (15).

In some cases, it is convenient to use the retarded time (r = distance

from burst point),

tr - t - r (33)C

rather than t in the equations of motion. The change to retarded time is

accomplished through the relation

dt = d r (34)r Ti c

(1 vr-) dt . (34)

Here v r is the radial component of the velocity comnpted from Eq. (26).

13
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6. Change in n Due to Fields

Eq. (28) shows how 71 increases with time due to the multiple scatter-
ing. We shall see now that additional changes in n occur if the electric
field has a component El, parallel to the central p

First, it is cear that the magnetic field, and the component Ej of
the electric field perpendicular to p cause no direct change in 1 . In
Figure 3 let the solid vectors represent central and extreme momenta

(a) (b)

Rgure (3) Change in momenta ;nduced by a -force, (a) perpendi-
cular to 4, and (b) antiparaiel to

initially, and the dashed vectors represent the same after action of a
perpendicular force in (a) and an antiparallel force in (b). In case (a)
the entire bundle of momenta is deflected, but the argular spread is not
changed in first order. But in case (b) the angular spread obviously
increases. If the force were parallel to p, the anigular spread would

decrease.

For a given momentum in the bundle of momenta, let p,, be the com-
ponent parallel to the central momentum, and p± the perpendicular com-
ponent. The angle 0 this momentum makes with the central momentum is
given by

tan 0 = pL/p (3S)

14
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From Eq. (10) one can find, by trigonometry,

tan 0 1=V,- (36)

Therefore,

= ( ' I/ + (37)

Let there be an electric field E,, parallel to the central p. Then the

equations of motion are

dpIIdt- = -lei El

(38)
dpi

-- 0dt

Then, differentiating Eq. (37) with respect to time yields

d 2 = pE2 / P ) d 2 1

dt. dt lte

- ie! q2-!) " -2 --  39
p, (39)

4 -4.
where, in the last line, p is the central p

Therefore, to include the effects of both multiple scattering and EH1

Eq. (28) must be replaced by

v f(w) + jel (n2-l)!- 1 (40)

7. Spatial Spreading of a Beam

As a result of the angular spread in velocity induced by multiple

scattering, an, initially collimated beam will also spread in space, around

15
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the central point determined from the equations of motion derived above.

We shall discuss this spreading in an approximate way, valid when the

angular spread is small, and in the absence of fields. We shall use the

Boltzmann equation, which determines the evolution of the distribution

function y(rv) in phase space,

+ * V = collision terms (41)

The collision terms have two effects. First, the magnitude of the

velocity v of a given particle is gradually decreased with time. The

average decrease in v corresponds to the energy loss given by Eq. (I).

There are also fluctuations in the energy loss, which give rise to a spread

in the magnitude of v at a given time; this in turn gives rise to a

spread in position of the particle at a given time. However, this spread

in position is less important than that induced by fluctuations in the

direction of v , which we discuss below. Therefore we shall assume that

the magnitude v decreases smoothly with time, and ignore the sr-cad ir

v . However, we shall give below an estimate of the effect of the spreau

in v.

The other effect of the collision terms is to cause fluctuations in the

direction of v . Because the scattering angle per collision is predominantly

very small, the spreading in dircction of v can be treated in the diffusion

approximation, with

collision terms = a V (42)

Here V8
2  is the angular part of the Laplacian cperator in velocity (rather

than coordinatej space, and - is (one fourth of) the mean square scattering

9. |angle per unit time. This quantity has already been used in Sec.'s (3) and

(4) above, and in fact we nave (as will be verified below)

a(sec_ ) v 2 (43)

16



We now choose n Cartesian coordinate system in which the x-axis is

parallel to the initial velocity of the collimated beam. We introduce

two-dimensional vectors for the two othogonal directions, defining

Sr ~ (y,z) L - L)4j

For the velocity, 6 will denote the angle between v and the x-axis.

ien 0 is small, it can be thought of as being composed of a deflection

e in the y-direction and a deflection 6 in the z-direction. (Two num-
y
be;s are required to specify the direction of the velocity.) Thus we may

regard 0 as a vector,

-~~'2 (45)

yz3 z

The velocity then has components, to first order
¢v = v(1- e2 parpllel to x-axis

, (46)

<.v = v paralle, to yz planel

(Note that v here is two dimensional, and will be until further notice.)

In this notation, the Bolxzann equation becomes

T- P(x,r, ,t) 4 v 1 - + v6 VP a 2 (47)

In this equation, v is understood to decrease smoothly with time; a also

changes with time, from Eq. (43). We shall normalize the initial tp to

unity,

x,r,,)dT =d dxydz dO (48)

By integrating Ea. (47) over phase space, it follows that p is so normal-

ized at all times,

17
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3- f(x r'A 't)dT = 0 (49)

We have assumed here that qp and its derivatives vanish fcr large values

of its arguments.

The average value of x at time t is

x (t)x= x(t)dT (50)

Multiplying Eq. (47) by x and integrating over phase space, we find

(I-d -X LSfd (

= (SI)

Similarly, multiplying Eq. (47) by &2 and integrating, we find

-2" = 4c (v82 2  = a) (52)

Comparing this result with Eq. (28), we see that Eq. (43) is verified.

Let us now calculate the spread in x . Note that

- (x-)2 = . (53)

Thus we need to calculate xT . Multiplying Eq. (47) by x2  and integrating,

we find

x 2 = v x(1 - 2v 2 (54)

Thus we need to find x . In the usual way, we find

x v i +- 4s

+ 2 a- (55)

18
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Now we need 6 , which is determined by

d t 

"

These relations may be condensed a bit by noting that

d ,X2 d - _ dx ..
T_ , .'T- =- - 0 2 -x0 2 ] (57)
dt cit x 2 t

The quantities on the right here have to be found from Eq's (.,). (52).

(55), and (56). All of these equations have to be _nte.-.rated taking into

account the dependence of v and a on t It is instructive, however,

to obtain an approximate answer by regarding v and a as constants.

One then finds

6 - = 4at ,(8

rj 2 4at(SS)A

x = vt(I-t) (59)

= 32(at)2  , (60)
vt4at - 2- (at),(61)

~2
= *(Vt)

2 (at)2  (Vt - 2 (62)

Fro-m Eq. (62) we see that the spread in x is conpariole with the amount

by which Y falls behind vt , the rosition the particle would have if

there were no scattering. This result Is ir substantial agreement with

the curves of Fig. (1).

We are also interested in the lateral spread of the beam. To this

end, one caiculates from Eq. (47),

= 2 v 'r (63)
dt

ci U =T r (64)

19J



in the approximation that v and a are constants, these equations

*integrate to

= 2(vt) (at) (6S)

2 = 2(vt)2(at) , (66)

= Z = = (vt)2(c t) (67)

One sees that tne lateral spread builds up more rapidly than the spread in

the x-direction.

If we had consideree the fluctuations in the magnitude of v , there

would have been an additional term in 6

(vt)2 (at) (68)

where 8 is the mean square (fractional) fluctuation in v per unit time,

d= 2 V2 at (69)

The rate 8 is smaller than the rate a by the ratio

(70)

Here [2) is given by Eq. (9). The factor y2  enters because, when

v = c , substantial changes in energy lead to only small changes in the

velocity. The factor Z occurs because energy !oss is due to collisions

with electrons, while angular scattering is due mainly to collisions with

the nucjei. The factor [21 occurs because the average of 02 involves a

logorithmic integral in Rutherford scattering while the average of

0' does ot. In air, 8 is only a few percent of a . Thus

2O



6. -

while the contribution to -  in Eq. (68) rises as a lower power of time

than that from Eq. (62), by the time at which the multiple scattering

becomes important, the terms in Eq. (62) are dominant.

As a numerical example, consider an electron beam that starts with

I Mev (yo = 3) . and let us examine the distribution when the energy has

fallen to 0.5 Hey .y = 2) . According :-a Eq. (22), we will then have

I 1.79 , for air. Then from Eq. (10), 0" = 1 , so that from Eq. (58),

qt 1/4 . From Eq's CS9), (62) and (67) we then find

- 3
x -vt4

1 =

Sv 2

Thus the lateral spread in position of the particle is about 2/3 of the

mean distance the particles have traveled at this time.

he see that the spread in po -. is appreciable, and could have

noticeable effects if included in Et' calculations. We do not propose

that the spatial spread be included in all JNIP calculations, but believe

that the method of Sections (5) arn (6), using the average position, is

adequate for most purposes.

However, occasionally we may want to make a calculation including the

full effects of multiple scattering. We believe that the best way to do

this is to add random velocity changes 6v as the equations of motion of

the Comjfton e~ectrons are being solved. Then, of course, the factors n

should be removed from the equations of motion. The drag force, which

gives the mean energy loss, should probably be left in the equations of

motion. Then to first order, the fluctuations 6v should be such as to

leave the magnitude v unaltered; however, fluctuations in 6v could

also be included, provided the average - is kept equal to zero.

|2
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It is not necessar; to make the prob,-h; v d'stribution of ov

match the Rutherford scattering law. A.z I -S 1V I << v it is

necessary only to make - and i iavp th.? corrept mean rates oI

increase (see, e.g., Eq's (52) and 43)).

8. The Ionization

We now turn to another effect of the Compton electrens, namely the

ionization they produce in the air. This is important because it deter-

mines the electrical conductivity of the air.

It is well known that fast electrons, in moving through air, produce

one ;.3n pair for (about) each 34 ev of energy lost by the fast electrons.

Not aHl of this ionization, however, is produced directly by the fast

electron. Rather, some of the electrons dislodged by the fast electron

have enough energy to produce further ionization. Ionization produced

Uirectiy by the fast electron is called the primary ionization, and

further ionization is called the secondary ionization. The secondary

ionization builds up gradually in time after production of the primary

ionization. The time lag in formation of the secondary ionization is

important for E.P at high altitudes.

The cross section for ionization of atoms by fast electrons was also

computed by Rethe (Reference 5). The cross section has also been measured

for some gases, including N2  and 02 , by Schram and collaborators

* (Reference 6). Using the experimental data to evaluate uncertain parameters

in Bethe's formula, we have deduced the following formula for the ioniza-

tion cross section per atom of air:

2i.2 (e2 /o 3

ai (air atom) M2Te.. ± [3 (71)

where ao is the Bohr radius and

13) ny +1 (72)

2V 2ny-l+-2

22
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with

M&= 4.05, V 16 ev for air. (73)

The number of ion pairs I produced per unit length by the fast electron is

dlg

dl = N.(74)

where N is the density of ai atoms, as befc-r. Comparing this equation

with Eq. (1), we cai, compute the energy lost per ion pair of primary ioniza-

tion,

d~ e Z(75)

We have evaluated this result for several electron energies, and obtain the

numbers in Table 2.

Table 2
y l.2 1.5 2.0 3.0 4.0

ev =

ion pair 80.0 84.5 85.4 86.4 86.9

di"
It is seen that z- does not change much over the range of interest; we

shall use the constant valne 86 ev/ion pair.

Thus we find that the total ionization is a factor 86/34 = 2.52 larger

than the primary ionization, i.e., each secondary electron must produce,

directly and indirectly, 1.52 additional electrons, on the average. We

need to find out how this residual ionization builds up in tine.

Fir.t, it may occur to the reader that the Auger effect, following ejec-

tion of a K-shell electron, should result in a practically instantaneous 4

increase of a few per cent in the number of free electrons. However, Mul-

tiple ionization, including Auger effect, was already included in the

23

* ~ ~ ~ ***~~ -



-~I M-'" -

-- 4

-. . . . . '- - ,-- - -' Z ; ... ' -. ' ' -tX t '- V -'- ' -° Z - ' ' ' ; . .

experiments of Schram et z1, zince they measured electric current rather

than counting ionization ev-ats.

To astimate the time to form the residual ionization, we must know some-

thing about the spectrum of enerp, w of the secondary electrons (i.e.,
prinmar" ionization). -Mere appears to be no experimental data on this Spec- -

rum. Theoretically, it is expected to be approximately of the form dw/w',

as in Rutherford scattering. Atomic binding will provide a cutoff of the

divergence at w.0. W'e shall therefore assume that the number dn of secon-
dary eiectrons having energy in dw" is: "

dn 2+ 2 (76)

To nor=lize this form to unity, we integrate from w=O to w=K/2, where W

is the energy of the primary electron; we define the secondary electzon to

be that one of the two outgoing electrons which has the smaller energy:

A A (7
I= fd arctan(I3=-I ;.- - (77)

In the last form here, we have taken advantagc of the fact that W!2% is

(usually) a very large number.

From Equations (76)and (77), we can calculate the mean energy of thr

secondary electrons:

K/ 2
NO _ d I__=2w0  ,dh = 9 . (78)

+ 0 w2 I WCo

This result can be used to determine an approximate value for the constant

w . We have seen above that for each free electron produced, the primary

electron loses, on the average, 86 ev. Of this, we estimate 20 ev is

e mended for the ionization notential and another 10 ev left in excitation

of atoms (or molecules). 1tus the mean kinetic enerff w of the secondary

electrons should be about 56 ev. Taking W 106 ev in Equation (78),

one then finds:

- -- .~ ~ ~ -~ -24



w 0 8.0 ev. (79)

This result seems reasonable, and is probably not in error by more than

L!0%.

Most of the secondary electrons in the distribution (76) have low

energy. The fraction n(w1 ) of electrons having w < w, is

2(W a (rc a \ (80)
n(w1) = Taretan ,(0

which leads to numbers in Table 3

Table- 3

(w/w) = 1 2 3 4
0

n(w1) = 0.50 0.71 0.80 0.85 1

On the other hand, the energy in the secondary electrons is spread

over a large range. The fraction F(w1) of the sc ondary energy contained

by electrons of energy w <w1  is

n~ u + 1 4 L
F(w) = -()

Qn l + 2

With W = 106 ev and 1 0 = 8.0 ev, this formula yields the numbers in

Table 4.

Table 4

- ~ - 110 i02 101 104 101
Wa

F(w ) 0.03 0.21 0.42 0.62 0.83 1.00
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We see that equal amounts of secondary energy are contained in

each decade. Since the amount of secondary ionization is approximately

proportional to the kinetic energy available, the secondary ionization

also will come equally from each decade.

Figure (4) is a graph of a. v for electrons on air atoms. In

plotting this graph we have used experimental data directly, rather than
Eq. (71), which is not very accurate for energies less than about 103 ev.

The initial rate Ro of production of ionization by secondary elec-

trons, per secondary electron, is

f f ~2 aiVWow d£ )(2
R0 = N foiv dn = N f w1 +wz d(.n . (82)

A numerical evaluation of this integral leads to the result

Ro = (1.04 x 108 cm3 /sec.) N (83)

This rate of production of ionization will not be maintained very

long. Fig. (5) is a graph of the integrand in Eq. (82), i.e. the factors

multiplying d(Zn w). One sees that most of the integral (5/6 of it, in

fact) comes from electrons in the energy decades below about 250 ev.

According to Eq. (81), or the table fo)lowing it, only about 30% of the 'A

total secondary ionization arises from secondary electrons in this energy

range. The initial ionization rate therefore cannot persist for a time

longer than

0.3 x 1.52 5.3 X .7
T = sec. (84)

-104xi0N N A

In fact, the rate shou;d have fallen by a factor 4 or 5 by this time,

since the secondaries with energy less than 250 ev will have been

exhausted.
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Figure 5. Solid curve, integrand of Eq. (82). Dashed
line, fit for higher energies.
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These considerations suggest a way of estimating the ionizatiop

rate at later times. From Fig. (5) we see that the higher energy part of

the differential ionization rate can be fitted quite well by the straight

dashed line, which represents the formula

dR = N [.2xlO- e-6 ' ] du, (85)

where

u = fn w (base e). (86)

On the other hand, from Eq. (81) we see that the fractional amount of

secondary energy per unit u is

dF =  0.091 du. (87)

The amount of secondary ionization that will be eventually produced by

dF is therefore

dI2 = 1.52 dF = O.158du. (88)

We estimate the lifetime T(u) for producing this ionization to be

T(u) 51 = .--- e 13U (89)

Thus at time T after production of the secondaries, all rf those

secondaries will be exhausted which had initial u less than

u(T) = Zn [2.32xI0"SNT (90)

The surviving secondaries (of higher energy) are at this time creating

ionization at the rate
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(

max 06e-)

R(T) N f  (32xl 'u)du, (91)

or, from Eq. (90)

R(T) 3.2x10- 1 F 1 (92)
N 1.3 2.32x0 -5 r(92)

0.106 NT
"' -a

Here Ur could be found from Eq. (89) using the maximum u; however, we

shall not evaluate T a.Y yet.

First, we shall increase R(T), over the result (92), by 50% on the

grounds that some of the tertiary electrons made will also produce ioniza-

tion, thus assisting the secondaries; thus we raise the factor 0.106 to

0.160. Second, we write R(T) in a form which also agrees with the result

(83) at T=O. Thus we write

R(T) MT.04x10-8 -ecN for T < T (93)
1+ NT' max

..54x10-

-0 for T > Ta

T can now be found by setting
max

Tmax / NT \

1.52 =f ( dt 0.160 n + 1.5-XIo7

0

which yields

NT = 2.OxlO' -cc/cm3  (94)

max

The amount of secondary ionization I,(T) produced by time T,

per secondaiy electron, is
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12(T) 0.160 NT ----- r N (9s)• l60 1 4xlO

Thus 1z(T) increases only slowly with time, and Teaches half its final

value at

NT1/2 -0 -  2x10 9 sec/cm3  (96)

In EP, one is often interested in the amount of ionization pro-

duced in a time of 10-8 second after loss of a given amount of energy by

the primary (Compton recoil electron). Per 34 ev lost by the primary,

the number of ion pairs formed by this time is

34N
N, 1 + 0.160 £n I + (97)3ip 86 SIx 1x0 A

This number is given in Table S as a function of altitude. One sees

that the effect of the time lag in formation of the secondary ionization

is an important effect at altitudes above 40 km or so.

Table 5

•itude, km = 0 10 20 30 40 so

N. = 1.00 0.98 0.90 0.79 0.69 0.6)ip

9. Electron Equilibration

Once the secondary, tertiary, etc., electrons have fallen below:

about 15 ev, they can no longer produce additional ionization. However,

they still lose energy in collisions with air molecules. If an electric

field E is present, the electrons gain energy from it. After some time,

the electrons reach an equilibrium distribution in energy, in which energy

lost to air molecules is balanced by energy, gained from the electric field.

This equilibrium distribution depends only on the ratio E/p, where p is the

air pressure, if the air temperature is assumed constant.
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In EMP calculations, it is usually assumed that the electrons

acquire the equilibrium distribution immediately after birth, and also

follow changes in E (or E/p) without time lag. Under this assumption,

such important quantities as the electron attach.nent rate (to 02), the

electron drift velocity or mobility, and the cascading rate or Townsend

coefficient, depend only on the instantaneous value of E/p. Conveniently,

experimental data for these quantities is usually obtained as functions

of E/p. Thus, in this approximation, it is not necessary to know the

details of the electron energy distribution.

If we now wish to take into account the deviations from equili-

brium, including time lags, we shall have to introduce parameters which

characterize the electron energy distribution. The simplest such charac-

terization is to use only the mean energy of the distribution. Actually,

the parameter Ue of electron swarm theory is 2/3 of the mean energy,

in analogy to temperature, although the energy distribution is not Max-

wellian if an electric field is present.

tie have seen in Sec. S that about 70% of the electrons have energy

less than 16 ev at birth. Most of the other 30% drop rapidly (in a

time given by Eq. (84) below 16 ev by producing further ionization. There-

fore, it seems reasonable to start the electrons off, in equilibration

calculations, with a mean energy of about 8 ev, or Ue about 5 ev.

Baum (Ref. 7) has studied the relaxation of Ue, using data on

momentum and energy transfer collision frequencies provided by A.VJPhelps.

We may use Baum's results to appraise the importance of the finite relax-

ation time for EMP calculations. Ife take as a typical electric field

I esu = 3xlO volt/meter. Table 6 then shows, for various altitudes,

the equilibrium value of Ue  and the time to reach equilibrium, starting

from U e = 5 ev. One sees that, for the electric field assumed, the times

are all less than l0-9 second. It therefore appears that the finite

relaxation time cannot have a drastic effect (by altering the effective
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electron mobility) on the peak electric field, unless the computed elec-

tric field changes appreciably in 10- 9 seconds.

Table 6

altitude, kin 0 10 20 30 40

Ue, ev = 0.17 0.35 1.0 1.6 %5

time, sec = 7x]O -1 9xlO-  3xlO- ' 3xlO-  -0- - 0

Note that at 40 kin, the equilibrium U is high enough that, for a
eI.Maxwell distribution of electron energies, cascading would occur rapidly.

However, for high Ue, the deviations from the Maxwellian distribution

are large. To compute the cascading rate correctly, one would need more

information (than U ) concerning the electron distribution. However, there

does not appear to be enough basic cross-section data available (currently)

to permit an adequate treatment of the detailed distribution. Thus the

cascading rate can be computed only for the equilibrium case, where it is

known from the Townsend coefficient, which has been determined experi-
mentally as a function of E/p. The determination of the cascading rate
from the data on the Townsend coefficient is discussed in Ref. 8.

At low altitude, where cascading normally is not important, one

could devise a non-equilibrium correction by using Baum's relaxation times.

It would be important to do this only if rise times of the electric field

are as short as 10-9 second.
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