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1.   INTRODUCTION 

An integral part of the ID-2D synthesis technique used to esti- 

mate the energy coupled into the ground from a near-surface burst is a 

simplified air fireball model.   The current model used in ground coupling 

work was developed by Pyatt, et al. in 1969.   One of the main limitations 

of this model is the assumption that the device output is a square wave in 

time; i. e., the device radiates at a constant rate for a finite period of time. 

Analytic modeling work in the coupling problem has indicated .that the time 

dependence of the device output is an important parameter in determining 

the radiative energy coupled into the ground.   This indication, together with 

the fact that a square wave is a poor representation of the output of a device, 

led us to reformulate the Pyatt air model for a more realistic device radia- 

tive yield.   During the course of this reformulation, several other improve- 

ments were made to the earlier model. 

The purpose of this report is to describe in some detail our re- 

formulation of the air fireball model.  We shall assume the reader is fa- 

miliar with the Pyatt model in general terms.   As in this early model, our 

reformulation envisions the air "burning out" at a fixed temperature.   That 

is, for air temperatures less than the burnout temperature, the air opacuy 

is assumed very large, and for air temperatures greater than the burnout 

temperature the air opacity is assumed very small. 

Bm M mtm —"■■■ - 
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2.   REPRESENTATION OF THE DEVICE OUTPUT 

We assume a point source of radiation of yield  Y  and a time 
dependence,   f(t) , given by 

m      1     (^)ea(t-to) 

f(t)=N^ (^^(t-t )      '      a>e (1) 

Here  N is a normalization constant such that 

J dtf(t) 
o 

(2) 

This function has the properties: 

a) Rises like ea    for small t   ; 

b) Falls like  e"^   for large  t   ; 

c) Has a single maximum at t = t    ; 
o 

d) f(to) = 1/N  . 
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3.   BURNOUT IN INFINITE AIR 

We assume that during the burnout phase of the fireball growth 

the air heats to a temperature  T-,  (the burnout temperature) and gets no 

hotter.   We designate by Q the energy density required to heat the air to 

this temperature  TR  .   At this temperature, we assume the air has a 

small residual opacity  x   .   The fact that  x ^ 0 means that a thermal 

radiation field will build up.   Let R = R(t)  by the fireball radius as a 

function of time.   We perform an energy balance on an element  dR  , 

assuming the streaming (source) radiation is responsible for the air burn- 
out at the edge of the fireball. 

Energy Balance in dR  in time   dt 

4irR cE dt = 4ffR2dRQ + 47rR2dRE (3) 

Energy 
Required for 
Burnout 

Streaming 
Radiation in 
Differential 
Volume 

Here  c  is the speed of light,   E     is the energy density at the edge of the 

fireball, and all other symbols are as previously defined.   Solving  Eq. (3) 
for dR/dt  , we find 

dR 
dt 

U 

(U/c) + 47rR2Q 
(4) 

where we have defined 

U = 47rRÄE c     . s 

The boundary condition on Eq. (4) is that the fireball has a zero initial 
radius, i. e., 

R(0) - 0     . 

(5) 

(6) 
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We now consider the buildup of thermal radiation in the burnout 

sphere.   If we assume the sphere to be optically thin, then we can ignore 

spatial gradients and write the rate equation for the volume as a whole. 

Energy Balance for Thermal Radiation 

Rate of Change 
of Thermal 
Radiation 

Emission of 
Thermal 
Radiation 

Absorption of 
Thermal 
Radiation 

(7) 

The solution of Eq. (7) is, making use of Eq.(16), 

00 

4  „S^ „4   pj.,4 „S/.-V   -pxcCt-t') 
K-TTR ET = pxcaTg J dt'sffR (t^e H (8) 

Here the new symbols introduced are  E»   , the thermal radiation density, 

p , the air density, and a  , the radiation constant. 

Finally, we consider the streaming radiation.   Since at the 

burnout temperature  TR the air opacity  (x) is non-zero, the burned 

out air will radiate and attempt to cool.   We assume the streaming 

radiation will be absorbed by the air as it radiates to maintain its tem- 

perature.   We perform an energy balance at some radius  r  in the in- 

terior of the fireball. 

Energy Balance for  E^ In dr  in time   dt 
  -.      ....- . -i. g   -—————^————— 

4iTr2E cdt|    - 4ffr2E cdt|     .    = -4irr drcffi s       r s      'r+dr k        s z 
Streaming 
Energy In 

Streaming 
Energy Out 

i 
Streaming 
Energy 
Absorbed 

(9) 
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Equation (9) gives the result 

d{^rEc) 9 dE 

a?—"47rr ^ar (10) 

Now, to maintain the air at the burnout temperature, the rate of absorption 

of streaming energy must equal the net rate of emission of thermal energy. 

Thus we have 

dE 

ar = P*c(aTB "V (U) 

and Eq. (10) becomes 

d(4irr E c) 2 
 gp-^-  = -4iTr pxc(aT^ -ET)     . 

The boundary condition on Eq. (12) is 

(12) 

47Tr Es(r,t)c ^ Yf(t)     . (13) 

Equation (13) is just the energy conservation condition for an arbitrarily 

small sphere surrounding the source. 

We rewrite Eq. (12) as 

A[41rr
2Es(r,t)c] = -47rr2S(t)     , (14) 

where we have defined 

S(t) E  pxc[aTg -ET(t)] (15) 

Now, r in Eq. (14) is a path length variable and t is the associated time 

at which the radiation under consideration is at the path length position r . 

Hence in Eq. (14) 

t - t    , + - ref     c 
(16) 

AM- „^^ ttuWi'iii'» nrtniinrnM' iMmum 
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where t   f is any fixed reference time.   Let as set 

ref      act 

R<W (17) 

where t    .   is the actual time of interest.   Thus Eq. (14) reads 

A [4ffr
2Es(r,t -^)c] = -4trr2S(t - ^     , 

where we have dropped the subscript on t    .   .   Integrai. ;n of Eq. (18) 

from  r=0 to r=R yields 

4irR2Es(R,t)c = 4irr2Es(r,t - ^)clr=0 

- J   dr47rr2S(t - ^)     , 
o c 

(18) 

(19) 

or, using Eq. (13), 

R R R-r. 
4irRZEc(R,t)c = Yf(t - ^) - J dr4ffrZS(t - ~~)     . (20) 

It is E (R,t)  that is denoted by simply  E    in Eq. (3). s s 

We summarize the three pertinent equations to be solved for the 

fireball radius, thermal radiation density, and streaming radiation den- 

sity as a function of time.   These are  [see Eqs. (4), (8), and (20)] 

U dR 
df (U/c) + 47rR Q 

(21) 

E, 
p xcaT„     t 

R"        o 
TfJL. jdt'R^tV^-^   , (22) 

R 
U = Yf(t - f) - 47rJ drr2S(t - 5l£)     , 

c o c 
(23) 

8 
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where  [see Eqs. (5) and (15)] 

U = 4ffR E c s 

S m pxc[aTB    - ET] 

(24) 

(25) 

In genera), these equations must be solved numerically, with starting 

conditions 

R(0) = 0 

ET(0) = 0 

S(0) = pxcaTg       , 

U(0) = Yf(0)     , 

dR(0)/dt = c     . 

The numerical solution continues until 

U = 47rR'E c = 0 s 

(26) 

(27) 

(28) 

(29) 

(30) 

(31) 

or 

i7rR3(Q + ET) 

t 
yjdt'f(t') 

0 

= 1 (32) 

The physical meaning of Eq. (31) is that the streaming radiation is entirely 

absorbed before it reaches the edge of the fireball.   The physical meaning 

of Eq. (32) is that the energy emitted by the source is just sufficient to 

maintain the air at a temperature  TR together with the thermal radiation 

field which has built up.   We shall discuss the finite difference analogue of 

Eqs. (21) through (23) in a later section in this report. 

9 
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A qaantity we shall find useful later on is the effective temperature 

01 the thermal radiation field, defined by the relationship 

4 „ (33> 
aTeff   JE

T    • 

10 

■ 

"'"—■ ■■-:—' --— 



JL'i- I! .lpi|WSBPl.lBLMI.UtSJiM4»IJ»* ■JUJJL.AM^m„h-^M.}M^^*M±,4MV.mn^^^ 

4. BURNOUT IN THE PRESENCE OF A GROUND 

We now modify the results of the last section to include the in- 

fluence of the ground.   The fireball will remain spherical until its radius 

equals  h  , the height of burst.   At later times, we assume the fireball 

is a truncated sphere, truncated by the air-ground interface. 

At such a time when R>h  , we have the schematic 

. 

Let us compute the volume of various regions of this sphere.   We have 

for all three regions the obvious result 

VABC = l^3     ' (34) 

The volume of regions A  and B  is given by 

VAR = J  dyffx2 = J dyff(R2-y2)      , 
-R -R 

(35) 

11 
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VAB = 7r(|R3 + R2h 

The volume of region A  alone is given by 

R 27rR 3  1 
VA = 2ir Jdrr^J dM = f^- J ^d^ 

-h/R 

(36) 

(37) 

VA = lnR2(R + h) (38) 

Now, we assume that the yield directed into segment B is not 

absorbed in the air, but is entirely absorbed in the ground and then en- 

tirely reradiated back into the fireball, all in zero time.   This energy is 

then available to increase the size of the fireball in the air.   Wo account 

for this by increasing the yield.   We let 

Yf(t)—Yf(t)d(t)     , ; (39) 

where d(t)  is the enhancement factor given by the ratio of 4'jr to the solid 

angle associated with Region A .   Thus we have 

d(t) = ABC 2R 
R+h (40) 

Of course, Eq. (40) holds only for  R 2 h  .   For  R < h  , we have 

d(t) H 1  . 

The burnout equations in the presence of a ground then become 

[seeEqs. (21) through (32) 

dR U 
01       (U/c) + AirR^Q 

ET- 

pxcaT^      t ., 4,. 

^AB^r^ 

(41) 

(42) 

12 
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R 
U = Yd(t - ^)f(t - ?) - 4ff Jdrr2S(t- ^)     , (43) 

with U  and S  still defined by Eqs. (24) and (25) and 

X R<h 

AB 

it&R3 + R2h - It)     ,      R^h     . 

4  „3 

(44) 

In writing Eq. (42) we have replaced JirR in Eq. (22) with VAB , the 

actual fireball volume. The burnout phase of the fireball growth is over 

when 

U s 47rR E c = 0 s (45) 

or 

VAB^ + ET) 
t 

Yjdt,f(t') 
o 

= 1 (46) 

The significance of Eqs. (45) and (46) has been discussed previously. 

13 
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5.   DIFFUSION PHASE OF THE FIREBALL GROWTH 

Following the end of burnout, we assume that further fireball 

growth takes place by a diffusion process.   At the end of burnout, the 

material and thermal radiation field are in general not in equilibrium, 

and we formulate the diffusion process to take this into account.   We 

assume that the diffusion growth of the fireball is described by one di- 

mensional spherical equation, but we shall account for the intersection 

of the fireball with the ground. 

In spherical geometry, the energy conservation equation is 

A(evT + ET + Es) + 4A(r2F) 
r 

^6(r) 
47r r 

(47) 

where  c    is the air heat capacity (assumed constant),   F  is the radiative 

flux, and Ö(r)  is the Dirac delta function indicating the source of radia- 

tion is at the center of the sphere.   To obtain diffusion theory, we assume 

the radiative flux is proportional to the gradient of the thermal radiation 

energy density; in particular we write 

F = - cX(T) öET 
3      ör (48) 

where  X(T)   is the air mean free path which, as indicated, depends upon 

temperature.   We further assume that  X(T)   has a cubic temperature 

dependence, i. e., 

T   3 

X(T)  = X(J-) (49) 
B 

where  X , a constant, is the air mean free path at  TR   , the burnout 

temperature.   Use of Eqs. (48) and (49) in Eq. (47) yields 

15 
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51 (c T+E   +E )  -   1   b    fr2 CX / T \3 ÖET1 + WMrt (50) 

Finally, we assume 

ET = eaT (51) 

where   f is allowed to depend upon time but not space.   [If  c  were also 

allowed to depend upon space, Eq. (51) could be considered a definition 

for  c . ]  Eq. (51) allows us to write 

,3^T 
br U^-U^ 

and use of Eq. (52) in Eq. (50) gives the diffusion equation 

^ (cvT+ET+Es) - —jp -j - [r   -(T ET)] + Y —j- 

B 

(52) 

(53) 

To proceed further, we form the first two spatial moments of 

Eq. (53).   Integration over all volume yields 

^ Jdr4nr2(cvT+ET+Es) = Yf(t) 
o 

(54) 

We now assume T, ET,   and  E    to be space independent within the fire- 

ball and zero elsewhere.   This gives 

|F[|.R3(cvT+ET+Es)] = Yf(t)      . (55) 

4  T,3 We recognize  W-TTR    as the volume of a sphere, and interpret this volume 

as the fireball volume,   VAB  [see Eq. (44)]. 

Thus Eq. (55) becomes 

Ä[VAts(c T+E^+E )] = Yf(t)     . öl L AB   v       T    s J (56) 

16 
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Equation (56) is, of course, just the conservation equation.   Similarly, 
3 

multiplying Eq. (53) by  r    and integrating over all space, we obtain 

OD GO 

A Jdrr3(c T+E  +E )   = -i^-j'drrT3E       , (57) 
o V       1     S       21T^    o 1 

where the right hand side of Eq. (57) resulted from two integrations by 

parts.   Again assuming T, ET, and  E    constant in space within the 

fireball and zero elsewhere yields 

For a sphere we have 

R UTT) 

1/3 
(59) 

and if we interpret the volume in Eq. (59) as VAR  , the actual fireball 

volume, Eq. (58) becomes 

it KB (CVT+VES'] = ( %f\^Y^\ ■ (60) 

Equations (56) and (60) are the first two spatial moments of the diffusion 

equation. 

The interaction between the material and radiation is handled by 

assuming  T, ET, and E    satisfy equilibration equations of the type 

3 

■Ä (VAnc,T) = pxc(^) VAia(Err+Er,-aT4)     , }t v  AB v ABV   T    s (61) 

17 
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^^ABV 

i(VABEs^ 

fr) f>xC\-T    VAB(aT ^^ 

pxc^l VABEs + Yf(t) 

(62) 

(63) 

The sum of Eqs. (61) through (63) is just Eq. (56), the conservation 

equation.   We consider Eqs. (60) through (63) as four equations for the 

four unknowns V AB E, and E    .   These equations are solved 

numerically, as we shall discuss in a later section of this report, with the 

starting conditions on the four dependent variables corresponding to the 

conditions at the end of burnout.   As before, it will be useful to define an 

effective temperature for the thermal radiation field by the relationship 

4 
a7      „     =    Err, eff        T (64) 

is 

i 

] 
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6.   FLUX IMPINGING UPON THE GROUND 

Once the fireball behavior as a function of time has been deter- 

mined, it is a simple task to compute the flux of energy impinging upon 

the ground at any radial distance  r   (r=0  lies directly under the device). 

Define  t*   as the time when the fireball first touches the ground 

at r   .   For  t < t*   , the flux incident on the ground at position r  is 

identically zero.   The streaming radiation energy density at  r  for  t > t* 

is given by the solution of the equation [see Eq. (20)] 

R 
4trR2E c = Yf(t - ?)  - J d^2 S(t - 5J) (65) 

where  R  is the fireball radius at  t=t*   and given by 

R = Jr2 + h5 

and S  is given by  [see Eq, (15)] 

(66) 

S = pxc(aTj   - ET)     . (67) 

Then, the streaming flux per unit area perpendicular to the ground at point 

r  is given by 

F   = cE   h/R     . s s 
(68) 

In addition to this streaming flux, the fireball thermal radiation 

field leads to a flux in the amount 

FT=^H     , (69) 

where  a = ca/4  and  T ff is the effective temperature of the fireball 

thermal radiation [see Eqs. (33) and (64)].   Thus the total flux  F 

19 
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impinging upon the ground as a function of time at some position r   is 
given by 

cE h . 
F=VFT--f + TTeH (70) 

; 
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7.   NUMERICAL ANALYSIS OF FIREBALL 
GROWTH EQUATIONS 

We discuss briefly the finite difference equations associated 

with the burnout equations, (41) through (43), and the diffusion equations, 

(60) through (63).   The finite difference equations conserve energy exactly 

and are unconditionally stable in the sense that accuracy alone controls 

the size of the time step. 

index. 

Equations (41) through (43) become, with  i  denoting the time 

,dR 
R. , = R. + ra. (t. 1 - t.)    , i+l        i     vdt'i v i+l       r (71) 

pxcaTB       i    1 

E.. = -_^ E^(Vi-vK-e^^i+1 T .-pxc(t. , - t.) 
Ti V ABi ABj 

1=1 

+ VAB,i+le lfl      3+1J      ' 

R R 
U.   .   = Yf(t.  .   - -M) d(t.   , - -i±i) 

1+1 1+1 C 1+1 c 

(72) 

- Air L^v-^M'u!-^) 
i = i 

1+1   \1+1 c )]■ 

x   'l+l 

U. 
i+l 

(Ui+1/c) + 47rR^1Q 

(73) 

(74) 
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where 

S. = pxc(aT„   - E. J 
i     ^ B        i+l' 

(75) 

and 

4
WR3 

ABi 
M. Tr(|R3 + R"h -    3   i i 

h   ) 

R. <h 
i 

R.s h 
i (76) 

To finite difference Eqs„ (60) through (63), we define 

T = V     T 1       VAB        ' 

E     = V     E 
T      VAB  T     ' 

Es=VABEs     ' 

A = pxc(TB/T) 

y = (^ ,1^, (^L)3 

21  /VT 

(77) 

(78) 

(79) 

(80) 

(81) 
B 

Defining 

(At). - t.  .  - t. 
i      i+l       i 

(82) 

we then write the conservative finite difference equations 

V1B(C T+E^+E ) ABV v       T    s Ji+1 
vl^ic T+E_+E ) 

ABV v       T     s7 i+(S T73| (At)i    ' 
ABi 

(83) 
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T. , - T 
1+1      1 

vLiÄ^yr i = A.CE-, . , + E    . ,   - aT3T. J iv  T, i-i-l        s,i+l i   i+r 

ET . .  - E 

(At). i\    ii+l        T,i+iy 

E E t. 
s>i+f  ..     s>i   . -A.E 

i+1 

TÄtT A.E    . , + ! rs^+i+ (Ätrj dt'f(t')  . 
i 

Adding these equations, we find 

(84) 

(85) 

(86) 

i+1 
(c T+ET+EJ       = (c T+ET+EJ   + Y J      dt'f(t')     , 'v       T    s7. i+1 >      T    s t. 

(87) 

which shows that the finite difference equations conserve energy.   The 

integral over  f(t)   in Eqs. (86) and (87) is performed using a two-point 

exponential quadrature since f(t)  varies primarily exponentially [see 

Eq. (1)].   Thus 

t i+1 (At^fd.^) - f(ti)] 
J   dt'f(t') = 
t. ln[f{t.+l)/f(t.)\ 

(88) 

This same quadrature formula was used in computing  N  , the normali- 

zation integral in Eq. (1), and hence the integration of the time dependent 

yield is handled consistently throughout, assuring numeric energy con- 

servation.   Rearranging Eqs. (84) through (86), we have 

t. 
i+1 

E ,    :   +   Y  J dt'f(t') 
'»       t. 

E       , s,i+l l+A.(At). 
i      i 

(89) 
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SU L 

T- + z- i     c„ 
T. 

ETi 
s,i+i 

+ üirrs5:J(At)ii[1+Ai(At)i] 
i+1 aT. 

1 + A. 1 + il        c. 
(At), 

(90) 

E T,i+1 

Em. + A.aT?T. AM). 

r+A^At). 

Equations (83) and (89) through (91) are solved for the four unknowns 

VAB ,   T ,   ET   , and Es  . 
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8.   DIFFERENCES OF FIREBALL MODEL FROM 
EARLIER (PYATT) MODEL 

We list here the major differences between the fireball model 

described in this report and the earlier one due to Pyatt, et al. 

a) The new model is formulated for arbitrary time dependence 

of the device output.   A reasonable representation of this 

time dependence is given by Eq. (1). 

b) During burnout, the buildup of thermal radiation is calcu- 

lated assuming the fireball to be optically thin [see Eq. (7)]. 

The earlier model used an optically thick equation. 

c) The yield enhancement factor [see Eq. (40)] is more 

physically reasonable than that used in the Pyatt model. 

d) The earlier model uses an arbitrary power law to describe 

the time dependence of the fireball temperature between the 

time the device ceases to radiate and the time burnout is 

over.   No such arbitrary fit is used in the current model. 

e) The earlier model assumed equilibrium between the matter 

and the thermal radiation field during the diffusion phase of 

the fireball growth. The present model makes no such as- 

sumption, but allows equilibration to take place simultane- 

ously with the diffusion [see Eqs. (61) through (63)]. 

f) The spatial dependence of the streaming radiation is cal- 

culated in the present model, rather than assuming a  l/r^ 

dependence as in the Pyatt model [see Eq. (20)]. 

g) An ad hoc similarity solution is not used to solve the diffusion 

equation.   Rather, a solution method which correctly accounts 
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for both the internal and radiative energy together is used 

[see Eq. (53)]. 

h)      A rorrection for the finite size of the fireball, used in the 

earlier model, is not required.   The thermal radiation 

field is calculated consistently for all times. 
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9.    FINAL REMARKS 

If the 1D-2D sj'nthesis technique is to be used for future energy 

coupling calculations, it would seem desirable to use the fireball model 

discussed in this report.   The primary reason for this is that this model 

incorporates a more reasonable device output time dependence, and ana- 

lytic calculations indicate that this time dependence can significantly 

affect the energy coupled. 

We intend to couple this air fireball model with a diffusion 

treatment of radiative transfer in the ground, and use this model to per- 

form parameter surveys in the energy coupling area.   This will give us 

a capability of investigating very inexpensively the sensitivity of the energy 

coupled to such parameters as yield, height of burst, time dependence of 

the device output, and ground properties.   In addition, we will be able to 

investigate certain aspects of the accuracy of the ID-2D synthesis tech- 

nique, such as the importance of having a correct description of the air 

burnout, and the number of radial slices required in the ground for good 

accuracy. 
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