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1. INTRODUCTION

An integral part of the 1D-2D synthesis technique used to esti-
mate the energy coupled into the ground from a near-surface burst is a
simplified air fireball model. The current model used in ground coupling
work was developed by Pyatt, et al. in 1969, One of the main limitations
of this model is the assumption that the device output is a square wave in
time; i. e,, the device radiates at a constant rate for a finite period of time.
Analytic modeling work in the coupling problem has indicateq that the time
dependence of the device output is an important parameter in determining
the radiative energy coupled into lthe ground. This indication, together with
the fact that a square wave is a poor representation of the output of a device,
led us to reformulate the Pyatt air model for a more realistic device radia-
tive yield, During the course of this reformulation, several other improve-
ments were made to the earlier model,

The purpose of this report is to describe in some detail our re-
formulation of the air fireball model. We shall assume the reader is fa-
miliar with the Pyatt model in gencral terms. As in this early medel, our
reformulation envisions the air "burning out” at a fixed temperature, That
is, for air ten;peratures less than the burnout temperature, the air opacily
is assumed very large, and for air temperatures greater than the burnout

temperature the air opacity is assumed very small,

i




] 2. REPRESENTATION OF THE DEVICE OUTPUT

We assume a point source of radiation of yield Y and a time
dependence, {(t) , given by

oft-t )
_ 1 {a+B)e 0

Here N is a normalization constant such that

] [ati) =1, (2)

This function has the properties;

a) Rises like emt for small t ;

¥

b)  Falls like et for large t

’

¢) Has a single maximum at t = t0 ;

d) f(to) =1/N .
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3. BURNOUT IN INFINITE AIR

We assume that during the burnout phase of the fireball growth

the air heats to a temperature TB (the burnout temperature) and gets no
hotter. We designate by Q the energy density required to heat the air to

this temperature TB . At this temperature, we assume the air has a
small residual opacity % . The fact that ®* #0 means that a thermal
radiation field will build up. Let R = R(t) by the firebail radius as a

function of time, We perform an energy balance on an element dR

¥

assuming the streaming (source) radiation is responsible for the air burn-
out at the edge of the fireball,

Energy Balance in dR in time dt

2

47R°CE dt = 4rR%4RQ + #R2RE_ |

pal

Incoming
Streaming
Radiation

Here c is the speed of light, ES

Energy

Burnout

Required for

- 8

Streaming
Radiation in
Differential
Volume

(3)

is the energy density at the edge of the

fireball, and all other symbols are as previously defined. Solving Eq. (3)

for dR/dt , we find

where we have defined

The boundary condition on Eq. (4) is that the fireball has a zero initial

radius, i.e.,

R u
® (W/e) « 4R
U = 41rR2ESc

R(0) = 0

.

(4)

(5)

(6)



We now consider the buildup of thermal radiation in the burnout
sphere, If we assume the sphere to be optically thin, then we can ignore
spatial gradients and write the rate equation for the volume as a whole,

Energy Balance‘for Thermal Radiation

d 4 3., 4.3 -4
-dT (gﬂR ET) = p)‘.Cgﬂ'R (aTB -ET) .

|

Rate of Change| |Emission of Absorption of
of Thermal Thermal Thermal
Radiation Radiation Radiation

The solution of Eq. (7) is, making use of Eq.(16),

g-uRa

) 4 pad 030 cpxc(t-t) . (8)
Ep = preaTy gdt 7R (t)e

Here the new symbols introduced are ET , the thermal radiation density,
p , the air density, and a , the radiation constant.

Finally, we consider the streaming radiation. Since at the
burnout temperature TB the air opacity (x) is non-zero, the burned
out air will radiate and attempt to cool. We assume the streaming
radiation will be absorbed by the air as it radiates to maintain its tem-
perature, We perform an energy balance at some radius r in the in-
terior of the fireball.

Energy Balance for Es In dr in time dt

2 2

2 -
dnr Escdtlr - dar Egcdtl = -4nr drdE_

t

Streaming Streaming Streaming
Energy In Energy Out Energy
Absorbed

r+dr
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Equation (9) gives the result

2
d(4nr Esc) 9 dES

'——m‘—-‘ = 471 'Et— . (10)

Now, to maintain the air at the burnout temperature, the rate of absorption
of streaming energy must equal the net rate of emission of thermal energy.
Thus we have

- —f = prclaTy -E)) (11)

and Eq. (10) becomes

d(41rr2ESc) 9 4
—— - ~dnr pxc(aTB -ET) A (12)
The boundary condition on Eq. {(12) is
411r2E (r,t)c —= Yi(t) (13)
s’ r-0 *

Equation (13) is just the energy conservation condition for an arbitrarily
small sphere surrounding the source.

We rewrite Eq. (12) as
a%[hrzEs(r,t)c] = -41rr28(t} , (14)

where we have defined

i}

S(t) pxc[aT4B -ET(t)] . (15)

Now, r in Eq. (14) is a path length variable and t is the associated time
at which the radiation under consideration is at the path length position r .
Hence in Eq. {14)

+ -, (16)
7




where tref is any fixed reference time. Let as set

R(t_ )
_ act
et tact T T e ) a7

&
i
b
A

where t, . is the actual time of interest. Thus Eq. (14) reads

d 2 R- 2 R-
i [47r°E (r,t --é--)c] = -4ar°S(t - —-c—-l:) , (18)

where we have drovped the subscrip! on ta ot Integrat. n of Eq. (18)

i e '"-:'-=-‘..-;:""- e i

from r=0 to r=R yields
3 2 o2 . Rer
- 4TR"E (R, t)c = 4mr"E_(r,t - =)l g
R
- dr41rr28(t - ?‘ ; (19)
0
or, using Eq. (13),
2. R 3., R
wRE (R, Ve = Yit - D) - [ drdmr’St - &) (20)
0
It is ES(R,t) that is denoted by simply E_ in Eq. (3).
We summarize the three pertinent equations to be solved for the
fireoball radius, thermal radiation density, and streaming radiation den-
sity as a function of time. These are [see Eqs. (4), (8}, and (20)]
e, (21)
) (U/c) + 7R Q
4 | pxcaTé t 3 _oxe(t-t)
Ep = T Jat'R(t"e -, (29)
1 o
R R 2. R
U= Vit - 2) - [ drrsit - =) (23)
o




where [see Egs. (5) and (15)]

U= 411R2Esc , (29)
S = m:[arr4 - E,) (25)
P B ™

In general, these equations must be solved numerically, with starting
conditions

R(O) =0 , (26)

Eg0) =0 (2

S(0) = pxcaTy (28)

u0) = Yf(0) |, (29)
dr{0)/dt = ¢

(30)

The numerical solution continues until

U = 411R2Esc = 0

) (31)

1 4 .3
| sTR (Q + E_)
{ g —T -1 . (32)
Y [dt'(e)
0

The physical meaning of Eq. (31) is that the streaming radiation is entirely
absorbed before it reaches the edge of the fireball. The physical meaning
of Eq. (32) is that the energy emitted by the source is just sufficient to
maintain the air at a temperature TB together with the thermal radiation
field which has built up. We shall discuss the finite difference analogue of
Egs. (21) through (23) in a later section in this report.



ive temperature

A quantity we shall find useful later on is the effect

of the thermal radiation field, defined by the relationship

4 g

aT eff T




4, BURNOUT IN THE PRESENCE OF A GROUND

We now modify the results of the last section to include the in-
fluence of the ground. The fireball will remain spherical until its radius
equals h , the height of burst, At later times, we assume the fireball
is a truncated sphere, truncated by the air-ground interface,

At such a time when R>h , we have the schematic

e |
A

¥ -
h
Let us compute the volume of various regions of this sphere, We have
for all three regions the obvious result
_4 3
VABC = S'T.fR . (34)
The volume of regions A and B is given by
h 9 B 9 2
Vap = J odymx® = [ dyn(R°-y) (35)
-R -R
11

L o p—————— T T




Vig - n(§R3 + R%h - T) : (36)

The volume of region A alone is given by
R
Vv dr

ol
o = 2 fdrrtf dp = 2—"?—]‘ , (31)
Hy

0 -h/R

9
VA=§-1rR(R+h) :

Now, we assume that the yield directed into segment B is rot
absorbed in the air, but is entirely absorbed in the ground and then en-
tirely reradiated back into the fireball, all in zero time. This energy is
then available to increase the size of the fireball in the air. We account
for this by increasing the yield. We let

Yi(t) — Yi(t)d(t) , (39)

where dt) is the enhancement factor given by the ratio of 47 to the solid
angle associated with Region A, Thus we have

Vapc _ 2R

" R+h

da(t) = v,

Of course, Eq. (40) holds onlyfor R=2 h . For R<h , we have
d(t) =

The burnout equations in the presence of a ground then become
[see Egs. (21) through (32)]

dR _ U
at (U/c) + 4nR25

4
pxcaTB t .
~ ' napucit-th
E, = ~——— £dtVAB(t)e

T Vagp




——

R
U = Yt - D - D) - 4r farePse- BT (43)

5 c
with U and S still defined by Egs. (24) and (25) and

g-nRs 5 R=h
Vap = 3
11(% RS + R%h - 'ls) . Rz2h . (44)

In writing Eq. (42) we have replaced g‘ﬂR3 in Eq., (22) with V AB ° the

actual fireball volume, The burnout phase of the fireball growth is over
when r

Us=4REC-0 , (45)

V,-@Q + E,)
AB T .y . (46)

Y [at'i(t")
O

The significance of Eqs. (45) and (46) has been discussed previously.

13




5. DIFFUSION PHASE OF THE FIREBALL GROWTH

1 Following the end of burnout, we assume that further fireball
growth takes place by a diffusion process. At the end of burnout, the
material and thermal radiation field are in general not in equilibrium,

and we formulate the diffusion process to take this into account. We
assume that the diffusion growth of the fireball is described by one di-
mensional spherical equation, but we shall account for the intersection
of the fireball with the ground.

In spherical geometry, the energy conservation equation is

d 1 2 2. Y
k ST.(CVT + ET + ES) + ? G_.l' (I’ F) = m 6(1‘) ’ (47)
; where Cy is the air heat capacity (assumed constant), F is the radiative
-

flux, and &(r) is the Dirac delta function indicating the source of radia-
tion is at the center of the sphere. To obtain diffusion theory, we assume
the radiative flux is proportional to the gradient of the thermal radiation
energy density; in particular we write

(1) 2B

F=-=3

(48)

where A{T) is the air mean free path which, as indicated, depends upon
temperature. We further assume that A(T) has a cubic temperature
dependence, i.e,,

3
MT) = M-) (49)
B

where A , aconstant, is the air mean free path at TB , the burnout
temperature. Use of Eqs. (48) and (49) in Eq. (47) yields



3 2E
d 18 | 2exyT T| Y£Ht)6(r)
5 & TEPE) = 75 [“ ?(Tg) _ci"] T 50}

’

Finally, we assume

_ 4
ET = ¢aT ’ (51) .-{

where ¢ is allowed to depend upon time but not space. [If ¢ were also i

allowed to depeand upon space, Eq. (51) could be considered a definition
for ¢ .] Eq. (51) allows us to write

3°ET 4
T "Tbr(aT) Tbr(TE) ] (52)

and use of Eq. (52) in Eq. (50) gives the diffusion equation

dex 22 3 1(t)6(r)

To proceed further, we form the first two spatial moments of
Eq. (53). Integration over all volume yields

g )
_b% ardmr (c, T+E+EJ) = Yi(t) . (54)

We now assume T, ET’ and Es to be space independent within the fire-

ball and zero elsewhere. This gives
2 (3R e T4EE )] = YA() (55)
pt 3 v T s )

We recognize g-ﬂ'R3 as the volume of a sphere, and interpret this volume
as the fireball volume, V,p [see Eq. (44)].

Thus Eq. (55) becomes

30{[" Apl¢, T+E+EQ] = YIO) . (56)




e T s M ke sl el i L
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Equation (56) is, of course, just the conservation equation. Similarly,

multiplying Eq. (53) by r3 and integrating over all space, we obtain

Sk JarrT’E, (57)
21T}3 0

5 7.3
-Sfa[drr (ch+ET+ES) =

where the right hand side of Eq. (57) resuited from two integrations by

parts. Again assuming T, E_, and E " constant in space within the

T
fireball and zero elsewhere yields

4cx 2.3

%Ebt- [R4(CVT+ET+ES)] = ——3 R™T ET . (58)
21TB
For a sphere we have
1/3
_ 3V)
R = (3 ; (59)
and if we interpret the volume in Eq. (59) as V AB ’ the actual fireball

volume, Eq. (58) becomes

2/3 .
> [,4/3 ~ (411) 16e \ ,2/3 .3
= v (e, T+E+E)| = (5 (—21T3 )VAB TE,, (60)
B
Equations (56) and (60) are the first two spatial moments of the diffusion

equation.

The interaction between the material and radiation is handled by

assuming T, E,, and ES satisfy equilibration equations of the type

T’

2 (TB i 4
=t (VABCVT) = pxcC -—,f,-) VAB(ET+ES-3.T ) 0 (61)

17
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3
> 4
3t VagEp = """("i“) Vap@T -Ep)
3
—B) V,gE, + YO .

The sum of Egs. (61) through (63) is just Eq. (56), the conservation
equation. We consider Eqs. (60} through (63) as four equations for the
four unknowns V AB ° T, ET , and ES . These equations are solved
numerically, as we shall discuss in a later section of this report, with the
starting conditions on the four dependent variables corresponding to the
conditions at the end of burnout. As before, it will be useful to define an
effective temperature for the thermail radiation field by the relationship

4

aT o = Ep . (64)
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6. FLUX IMPINGING UPON THE GROUND

Once the fireball behavior as a function of time has been deter-
mined, it is a simple task to compute the flux of energy impinging upon
the ground at any radial distance r (r=0 lies directly under the devicej.

Define t* as the time when the fireball first touches the ground
at r . For t<t* , the flux incident on the ground at position r is
identically zero. The streaming radiation energy density at r for t>t*
is given by the solution of the equation [see Eq. (20)]

R
2] -
4R%E ¢ = it - D) - [ deang?se - B5) (65)
s c 5 c
where R is the fireball radius at t=t* and given by

R=4r +h y (66)

and S is given by [see Eq. (15)]

§ = pxc(aT% -E (67)

T
Then, the streaming flux per unit area perpendicular to the grouad at point
r is given by

F = cE_ h/R . (68)

In addition to this streaming flux, the fireball thermal radiation
field leads to a flux in the amount

4
Fp =0Ty (69)
where ¢ =ca/4 and T 4 is the effective temperature of the fireball
thermal radiation [see Eqs. (33) and (64}], Thus the total flux F
19
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impinging upon the ground as a function of time at some position r is
given by

cE h

_ _ 8 ca .4 '
F = FS+FT = —R'— + TTEff . (70) .

20 ;
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7. NUMERICAL ANALYSIS OF FIREBALL
GROWTH EQUATIONS

We discuss briefly the finite difference equations associated
with the burnout equations, (41) through (43), and the diffusion equations,
(60) through (63). The finite difference equations conserve energy exactly
and are unconditicnally stable in the sense that accuracy alone controls
the size of the time step.

Equations (41) through (43) become, with i denocting the time

index,
) dR
Rig =R+ (@it -8 (T1)
‘”‘"aT‘lB L1 —pxclt, | - t)
E. = —5——0 =t -t)|v, e i+l 7
Ti = Vg L2 1 ;.)[ ABj whod
j=1
-pxelt. , -t
+ VAB,j+1e pre( irl ]+1)] 5 (72)
Ria Rin
Ui+1 - Yf(ti+1 B T) d(ti+1 " Tc )
i R -R
1 2 ( i+1 ])
- 47 E 5 Ry -Rj)[Rj st -
i=1
R. . -R
2 ( Rin j+1)]
* Rj+ls ti+1 e 2 (73)
4R\ Uin 7
X)) .- g , (74)
i+1 (Ui+1/c) + 4n i+1Q

21
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"R
ABi ~

; 2.3 2
n(gR; +Rh-—3—) . Rz=h

To finite difference Eqs. (60) through (63), we define

T=v,pT ,

Ep = VapEr >

Es = VABES 4

b
1

oe(y/D)°

2/3
- ED (T z)

2
|

Defining

af; =t -4 >

we then write the conservative finite difference equations

vE

1/3 1/3 T
[ (c, T+ET+E )]l . [ AB (c T+ET+E )]1 + (VTBE) (At)i 5
i

(76)

{1

(78)

(79)

(80)

(81)

(82)

(83)




T . -T
i+l i|] _ 3_
cv[ i\Atii ] - Ai(ET,i+1 . Es,i.|.1 - aTiTi+1) ’ (84)

E -E. .
T,i+1 T, 1 _ 3-—; R
7 Ai(aTi'Iiu ET,i+1) , (83)
E - E Y41
s,i41 ~ 81 _ L, g .Y IH
(a0, T UiUs, el T AR, dt'ie) . (86)
i
Adding these equations, we find
& _ - i+1 ‘
(ch+ET+E S)i+1 = (ch+ET+Es)i + Y{ at'f(tny (87)
: i

which shows that the finite difference equations conserve energy. The
integral over f(t} in Egs. (86) and (87) is performed using a two-point
exponential quadrature since f(t) varies primarily exponentially [see
Eq. (1)]. Thus

t

41 (at).[it. J) - f(t)]
sty = —i 1t i . (88)

t{ TaiE,_ /i)

This same quadrature formula was used in computing N , the normali-

zation integral in Eq. (1), and hence the integration of the time dependent
yield is handled consistently throughout, assuring numeric energy con-
gervation. Rearranging Eqs. (84) through (86), we have

t.
3 i+1
1 L]
By y+ th dt'i(t)
. . i
Ee il = T (AT ) (89)

23




A, E
< Ml Ti
T+ o |Bs i * oA, | (A% { (1444089
v 1 1
= 3 ’ (90)
aTi
14+ Ai 1+ . (At)i
v
E_ .+ AaT°T. (AY)
5 _ Byt ART T30
T,i+1 T7A1AD,

Equations (83) and (89) through (91) are solved for the four unknowns

UNY

24
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8. DIFFERENCES OF FIREBALL MODEL FROM
EARLIER (PYATT) MODEL

We list here the major differences between the fireball model
described in this report and the earlier one due to Pyatt, et al.,

a) The new model is formulated for arbitrary time dependence
of the device output. A reasonable representation of this
time dependence is given by Eq. (1).

During burnout, the buildup of thermal radiation is calcu-
lated assuming the fireball to be optically thin [see Eq. (7)].
The earlier model used an optically thick eqhation.

The yield enhancement factor [see Eq. (40)] is more
physically reasonable thau that used in the Pyatt model.

The earlier model uses an arbitrary power law to describe
the time dependence of the fireball temperature between the
time the device ceases to radiate and the time burnout is

over. No such arbitrary {it is used in the current model.

The earlier model assumed equilibrium between the mat.cr
and the thermal radiation field during the diffusion phase of
the fireball growth, The present model makes no such as-
sumption, but allows equilibration to take place simultane-
ously with the diffusion [see Eqs. (61) through (63)].

The spatial dependence of the streaming radiation is cal-
culated in the present model, rather than assuming a 1/ 12
dependence as in the Pyatt model [see Eq. (20)].

An ad hoc similarity solution is not used to solve the diffusion

equation. Rather, 2 solution method which correctly accounts




for both the internal and radiative energy together is usec
[see Kq. (53)].

h) A correction for the finite size of the fireball, used in the
earlier model, is not required. The thermal radiation
field is calculated consistently for all times.
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9. FINAL REMARKS

If the 1D-2D synthesis technique is to be used for future energy
coupling calculations, it would seem desirable to use the fireball model
discussed in this report. The primary reason for this is that this model
incorporates a more reasonable device output time dependence, and ana-
lytic calculations indicate that this time dependence can significantly
affect the energy coupled, 3

We intend to couple this air fireball model with a diffusion
treatmeint of radiative transfer in the ground, and use this model to per-
form parameter surveys in the energy coupling area. This will give us
a capability of investigating very inexpensively the sensitivity of the energy
coupled to such parameters as yield, height of burst, time dependence of
the device output, and ground properties. In addition, we will be able to
investigate certain aspects of the accuracy of the 1D-2D synthesis tech-
nique, such as the importance of having a correct description of the air
burnout, and the number of radial slices required in the ground for good
accuracy.
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