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Background: What is EMP?

Significant electromagnetic pulse (EMP) threats occur when:

1. A nuclear weapon is detonated
2. An extreme solar storm occurs
3. A non-nuclear EMP (Radio Frequency) weapon is used

Three major types of nuclear EMP

1. Source Region EMP (SREMP) - observed since our first nuclear test
* Mainly a problem with surface detonations
* Can disrupt power and communications throughout an entire city/region
* Physics are well understood/modeled, but effects are widely misunderstood

2. High Altitude EMP (HEMP) — from balloon or missile nuclear burst
* 1 burst can disrupt U.S. power/communications over many states or continent
* May take months or years to repair damage
* Controversy over strength of electric fields

3. System Generated EMP (SGEMP)
* Disrupts/damages satellites UNCLASSIFIED
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Background:
Source Region EMP (SREMP)
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Source Region EMP Generation/Effects

The “source region” for a surface burst is typically 2 — 5 km if burst outside. Itis
the region where the initial radiation output (gamma, x-rays, neutrons) produces
electron currents and air conductivity -- the sources for the SREMP

However, SREMP can disrupt systems over 100 miles away
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28 May 2015— Kevin Briggs

Source Region EMP — Why worry?

1945: Enrico Fermi predicted Source Region EMP with the first nuclear
detonation at ground level (Trinity Test)

= Even with shielding, some test equipment failed and records were lost

During 1950s/60s surface burst tests, equipment/cables were damaged by
SREMP in over 100 cases at the Nevada Test Site

= (Cables & connected equipment were damaged in almost every test

= Circuit breakers tripped at Mercury (30 miles away) — needed reset

In a 1953 test, a cable bundle was damaged at the Control Point (13 miles
away) -- wires were melted

A fire was started during SREMP testing of President’s comms
Electronics can be upset/damaged over 100 miles from burst
SREMP can cause long-term regional power outages

SREMP can damage electronics in deeply buried structures
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Calculated SREMP Line Coupling

Damage/Upet for Various Yields

Yield (kT) 1.00 10.00/ 100.00| 1000.00 3.00

D — range to effectinkm  |-----m--ome- >
Buried Telecomm Cable Damage 13.00 21.00 34.91 44.16 16.34
Buried Telecomm Cable Upset 18.00 26.00 39.98 49.19 21.45
Radial Overhead HV Powerline Damage 35.00 65.00f 110.05] 134.16 47.03
Radial Overhead HV Powerline Upset 46.00 85.00f 143.00, 174.00 61.66
0.5 km Offset Overhead HV Powerline Damage 0.30 23.00 33.00 44.00 2.38
0.5 km Offset Overhead HV Powerline Upset 0.30 43.00 66.00 84.00 3.21
1.0 km Offset Overhead HV Powerline Damage 0.10 10.00 20.00 31.00 0.90
1.0 km Offset Overhead HV Powerline Upset 0.10 30.00 53.00 71.00 1.52
25' Ethernet Cable Damage 6.18 10.31 11.44 12.18 7.89
25' Ethernet Cable Upset 18.75 36.43 41.55 44 .83 25.75
100" Ethernet Cable Damage 11.34 21.04 23.76 26.40 15.23
100" Ethernet Cable Upset 41.11 77.42 86.88 05.84 55.60
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10kT Peak Overpressure

In pounds per square inch (PSl)
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10kT Source Region EMP (SREMP) Model

100’ Ethernet Cable Upset/Damage
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10kT SREMP Simulation —

Cordless Phone Damage
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10kT SREMP Simulation — Potential

FM Radio Transmission Upset/Damage

equipment may be upset and
need a technician to reset
equipment within 82 miles of the
burst point due to SREMP. Any
Emergency Alert System (EAS)
Primary Entry Point radio station
that is protected against HEMP
may be able to operate
immediately after a regional
burst, but HEMP protections may
not be effective against SREMP.
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10kT SREMP Simulation —
Cellular Handset Damage/Upset
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10kT SREMP Simulation — 200’

Cellular Tower Shield
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SREMP consequences for

infrastructures and communications

* Catastrophic transformer failures at plants, substations, etc.

* Power controls, relays, generators, computers are disrupted

* Equipment connected to power or metallic data cables disrupted
1 Consequences:

* Immediate power outages in city/region complicates response
Loss of heating, air conditioning, lighting

e Winter is worse case due to: (1) pipes bursting and (2) fires

Public may panic due to food/water/essential service outages
Telecommunications failures widespread after a few hours
If near nuclear power plant, could risk Fukushima-like issues
Restoration/response hindered greatly by nuclear fallout/fires
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High Altitude EMP (HEMP) Risks
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The July 1962 —Starfish Prime high altitude

nuclear burst as seen through heavy cloud

cover from Honolulu about 900 miles away. The Starfish Prime air-glow aurora
Aurora effects were observed for as long as as seen at three minutes from a

7 to 14 minutes in some areas. surveillance aircraft

11 May 2015 — Kevin Briggs UNCLASSIFIED



History of HEMP — USA

- 1962: U.S. “Starfish Prime” High Altitude EMP (HEMP) Test
e At midnight (9 July) over Johnston Island, a 1.4 MT device was detonated at 400
km (~ 250 miles) altitude ; a ~ 14 kV/m EMP resulted at Johnston Island
* At 100 nanoseconds, Hawaii experienced a 5.6 kV/m EMP
* Blew fuses supporting ~ 300 street lights in Oahu (~ 900 miles away)
 Damaged a microwave link that then shut down telephone service between
Kauai to the other Hawaiian islands
e Other: some car ignition systems fused and burglar alarms went off
» Artificial radiation belt of trapped electrons damaged many satellites
* Solar panels degraded; most satellites failed (within days to 6 months)

* HF radio was disrupted for minutes to hours in the region; HF TRX’s damaged

A similar burst over the central USA today would likely shut down commercial
power and communications in large regions for months or longer

28 May 2015- Kevin Briggs UNCLASSIFIED 16




High Altitude EMP (HEMP)

Most significant EMP; has 3 components

El is the fast (less than microsecond) and powerful pulse that can destroy
computers and communications equipment and disrupt power grids

2. E2 occurs from 1 microsecond out to 1 second and is generated by gammas
produced by weapon neutrons and is less powerful than the E1 pulse

 The main risk with the E2 component is that it immediately follows the
E1 component, which may have damaged the lightning protection
devices that would normally also have protected against E2

3. E3is aslow pulse that arrives after 1 second and can last several minutes
 E3 can penetrate the ground and water; similar to solar storm EMP
 E3A (Blast) occursin 1 —10 seconds; E3B (Heave) in 10 — 300 seconds

 E3 can produce damaging surge currents in long electrical conductors
like power lines or undersea cables

See Meta-R-319 through Meta-R-324 for more
information on the various types of EMP UNCLASSIFIED
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| Exposed region for various burst helghts (HOB)
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EMP — Lessons from Soviet History
Oct 1962 K-3 HEMP Test Results

300 kT burst at 290 km altitude

Overhead Power and Communications Lines Damaqed
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EMP — Lessons from Soviet History

» 1962: Soviet K-3 HEMP Test (U.S. designation: Test #184)

e 22 October 1962 (~ 6 AM): During the Cuban missile crisis, the Soviets detonated a
300 kT device at 290 km HOB over Kazakhstan’s Sary Shagan ABM Test Range

e Soviets experienced outages on ~ 500 kilometer long telephone line
* Line was protected by gas-filled surge arresters (R-350) and fuses (SN-1)
* Arresters fired and fuses were blown out at all repeater points due to EMP
* Based on later testing, R-350 arresters were shown to fire at 350 £ 40 V

 Upto7.5kV/m peak E1 (< 1 ps) field strengths were estimated :
* E1 peak induced voltage on 80 km subline 1 was > 20 kV [R-350 fired]
 E1 peakinduced current was approximately 65 A [not blow fuse]

* E3 amplitude did not exceed 5 V/km (for 80 km segment, total V = 400V)
 E3 would have caused the R-350 to fire, but E1 prevails for damage
* E3 current of several seconds of 4A easily blows the fuses (fail at ~¥1 A)

Q: Have you fixed the problems? A: ... All trunk lines are now underground, which
was a Ministry of Communications initiative to protect civilian communications.

UNCLASSIFIED Prime Sources: Greetsai, Vasily N., et al. "Response of Long Lines to Nuclear High-Altitude Electromagnetic
28 Mav 2015 — Kevin Bri Pulse (HEMP)" IEEE Transactions on Electromagnetic Compatibility, Vol. 40, No. 4, November, 1998 21
2 1100 S ; and http://nuclearweaponarchive.org/News/Loborev.txt [see notes page for additional info]



EMP - Lessons from Soviet History

(continued)

> 1962: Soviet K-3 HEMP Test (U.S. designation: Test #184) / cont.

* Q: What were the effects on electricity generation ...?
e A: Generators (fixed diesel plants) & substations were damaged by E1

« Effects on power plant and power cables (& buried telecomm cables)

 E3 EMP penetrated 0.9 meters into the ground, overloading a shallow buried
lead and steel tape-protected 1,000-km long power cable; firing circuit
breakers and setting the Karaganda power plant on fire ...

* “The 1,000 km long Agmola-Almaty power line was a lead-shielded cable ... it
succumbed completely to the low frequency EMP at 10-90 seconds after the
test, since the low frequencies penetrated through 90 cm of earth, inducing
an almost direct current in the cable, that overheated and set the power
supply on fire at Karaganda, destroying it. ... This overheated the
transformers, which are vulnerable to short-circuit by DC.”

* Many failures of buried long line telecom & power systems were noted

[RadaSkV] Prime Sources: Greetsai, Vasily N., et al. "Response of Long Lines to Nuclear High-Altitude Electromagnetic
Pulse (HEMP)" IEEE Transactions on Electromagnetic Compatibility, Vol. 40, No. 4, November, 1998; and

UNCLASSIFIED http://nuclearweaponarchive.org/News/Loborev.txt
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What can EMP do?

Testimony of the Chairman of the EMP Commission: “Depending on the specific
characteristics of the EMP attacks, unprecedented cascading failures of major
infrastructures could result. In that event, a regional or national recovery would be long
and difficult, and would seriously degrade the safety and overall viability of our Nation. ...
The recovery of any one of the key national infrastructures is dependent upon the
recovery of others. The longer the outage, the more problematic and uncertain the
recovery will be. It is possible for the functional outages to become mutually reinforcing
until at some point the degradation of infrastructure could have irreversible effects on
the country’s ability to support its population.” www.empcommission.org/docs/GRAHAMtestimony10JULY2008.pdf

EMP Commission finding: “The Congressional EMP Commission
estimates that, given the nation’s current unpreparedness, within
one year of an EMP attack, two-thirds of the U.S. population —
200 million Americans — would probably perish from starvation,
disease and societal collapse.” wwwwashingtontimes.com/news/2012/dec/19/north-

korea-emp-attack-could-destroy-us-now/#ixzz2 TEqorSvV

UNCLASSIFIED
28 May 2015 — Kevin Briggs 23
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High-Altitude Electromagnetic Pulse

Effects on Electronics

B There are no similar natural effects that routinely would be as strong — but
HEMP is somewhat like:

» Electrostatic Discharge (ESD) fields have some similarities to early part of HEMP - E1.
« Solar magnetic storms are similar to late part of HEMP — ES3.

« HEMP is of concern for electronic equipment — upset or damage.

-

= UB R 2o oo A= i 4@.*:3% 5 AP
Network interface “blowing up” Damaged part from pulsing of a
— here from a SCADA unit timing port in a SCADA unit
(SCADA = “supervisory control and data acquisition”, electric power grid controls.)
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In-line capacitor

completely blown off a
NIC.

The main IC of
a NIC — with
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E1 HEMP peak voltage

from 1 MT detonation over the USA
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Impacts: E1 Potential Upset/Damage Areas for

100’ North/South Oriented Cat 5 Cables

E1 HEMP, 100' Ethernet Cable, Up: 5.000 A, Dmg: 10.000 A
Yield= 1000.00 kT, HOB= 400.00 km at 40.0000N, 100.0000WV; Tan=2200.8 km
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Impacts: E1 HEMP Potential Upset/Damage

Areas for E/W Cordless Phone AC/DC Adapter

E1 HEMP, Cordless Telephone, Up: 3.990 A, Dmg: 4.000 A

Yield= 1000.00 kT, HOB= 400.00 km at 40.0000N, 100.0000W; Tan=2200.8 km
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Impacts: E1 HEMP Potential Upset/Damage

Areas for Vertical Monopole HF Antenna/Radio

E1 HEMP, HF Vertical Monopole Signal, Up: 1.000 A, Dmg: 10.000 A

Yield= 1000.00 kT, HOB= 400.00 km at 40.0000N, 100.0000W; Tan=2200.8 km
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Impacts: E1 HEMP Potential Upset/Damage

Areas for 200 meter tall AM Radio Tower Shield

, ‘ El1 HEMP, 200m AM Antenna Signal, Up: 100.000 A, Dmg: 1000.000 A
Yield= 1000.00 kT, HOB= 400.00 km at 40.0000N, 100.0000W; Tan=2200.8 km
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Impacts: E1 HEMP Potential Upset/Damage

Areas for 200 foot Cell Tower Shield

E1 HEMP, 200" Cell Tower Shield, Up: 100.000 A, Dmg: 1000.000 A
Yield= 1000.00 kT, HOB= 400.00 km at 40.0000N, 100.0000W; Tan=2200.8 km
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25 kT Gulf Launch: E1 HEMP Potential

Upset/Damage Areas for 100’ N/S Ethernet

E1 HEMP, 100' Ethernet Cable, Up: 5.000 A, Dmg: 10.000 A
Yield= 25.00 kT, HOB= 300.00 km at 34.0000N, 87.0000WV; Tan=1917.9 km

45N XYE50N J | N i 4 gt
A R I
} T e /_/f | Y5ary, N/S Line |
3 S wt 5 ) 5 % .
tle ?}} Q j.,:c:b @;@%St' John’'s Amps
74 fx{\ ‘ 40Wpk=6.524E+01
40N " éi)\p Q&fyz'grc System04
" K4
L g'?‘« Damage
#New York Upset
Pll/ashington DC
14
30N
y Atlsihta ‘Bermuda
25N .al :
| ¢ e oy _ 50W
20N Q'\ﬂ'@\fﬂ'
\ * )
L ana
! ~ e -
15N ™ #Mexico, City T2 s gsan Juan
\\\\ § < [Nt Y é;
\\\/«.\ (J : S 1 |
s 1100
10N ; uatgh
110w 100W \\ﬁﬁé} P ol oW _sow kilometers

28 May 2015 — Kevin Briggs UNCLASSIFIED

32



25 KT Gulf Launch: E1 Potential Upset/Damage

Areas for HF Vertical Monopole Antenna/Radio

E1 HEMP, HF Vertical Monopole Signal, Up: 1.000 A, Dmg: 10.000 A
Yield= 25.00 kT, HOB= 300.00 km at 34.0000N, 87.0000W; Tan=1917.9 km
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E1l HEMP, Cordless Telephone, Up: 3.990 A, Dmg: 4.000 A
Yield= 25.00 kT, HOB= 300.00 km at 34.0000N, 87.0000W; Tan=1917.9 km
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25 kT Gulf Launch: E3A HEMP Peak nT/min

from 25 kT Detonation over Alabama

E3A HEMP, Blast
Yield= 25.00 kT, HOB= 300.00 km at 34.0000N, 87.0000w
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1859 Solar Superstorms.
Quebec grid collapsed in
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1MT Burst over Central USA

E3A HEMP Peak nT/min

E3A HEMP, Blast
Yield= 1000.00 kT, HOB= 400.00 km at 40.0000N, 100.0000wW
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EMP Hardening Issues/Approaches

> Need to develop guidance for protecting against all forms of EMP, to include:
HEMP, Source Region EMP (SREMP), RF Weapons, Solar, etc.
» Determine if system requires Military Standard HEMP protection approach
* Is the system time-urgent under Department of Defense directives?
* If so, the military HEMP hardening standard should be used (MIL-STD-188-125)

e [If MIL-STD not required, use standards or latest DHS guidelines
* International Telecommunication Union (ITU) standards (K.78, K.81)
* International Electrotechnical Commission (IEC) standards (SC 77C’s 61000 series)
 DHS EMP Protection Guidelines for Equipment, Facilities, and Data Centers

» Need massively scalable, cost-effective approaches:
* Use bolted together equipment shelters where possible (versus welded designs)
* Develop/use low-cost automated, remote, test, verification, and monitoring units
* Develop low-cost power isolation techniques to help handle SREMP risks

* Develop and test methods of cost-effectively removing all metallic power and data

cables in buildings, undersea cables, and to equipment and remote antennas
28 May 2015 — Kevin Briggs 37



Hardening Techniques
(MIL-STD-188-125)

kV/Im 15 — | = 100kT| - RF Shielding (Faraday shield)
10 S0 kT - Aperture treatment
e | 20KT * Electrical penetration treatment
3 r%4—|—|—|—|u =cliedns * Grounding
50 60 70 80 90 100

Altitude (km)

Cost to Harden using DoD approach
(% of System Cost)
Assumes “forward fit” vice retrofit
if use MIL-STD 188-125

Tactical Systems 1-2%
Fixed Facilities 2-3%
Aircraft 5%
Cruise Missiles 5%
Strategic Missiles 5%

28 May 2015 — Kevin Briggs
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DHS EMP Protection Guidelines *

Electromagnetic Pulse (EMP) Protection
Guidelines for Equipment, Facilities and

Data Centers
Version 6.0

11 May 2015
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* Note: Guidelines are preliminary and subject to change
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Four EMP Protection Levels (Preliminary)

Level 1 Level 2
Use MIL-STD-188- | Protect all external power
125-1 and MIL- and data line entries. In

HDBK-423 HEMP | addition, use EM shielded

UNCLASSIFIED

rooms around critical
equipment (like computer
servers and data storage
units, phone PBXs, HVAC,
and backup power units).
Rooms can be non-
welded, bolt-together
designs; use EMP SPDs
throughout facilities or
buildings outside of

shielding protection
with brazed or
welded EMP rooms
to protect key
equipment; HEMP
surge protection
devices (SPDs)
throughout facilities
or buildings outside
of shielded areas.

Use true on- shielded areas. Can use
line/double single-door entryways.
conversion UPS for Use true on-line/double
further power conversion UPS for further

protection. Use MIL-
STD double-door
entryways.

power protection.
Reference I[EC SC 77C
standards for design
guidance and testing.

Level 3
Protect power & data
lines (as with Level 4)
plus protect all external
power entries; any
analog phone lines and
cables coming in from
any external antennas
(such as HF, VHF, or
UHF antennas) with
EMP filters; use true
on-line/double
conversion UPS for
further power
protection; use fiber
optic data cables where
possible, otherwise use
shielded network
cables: use EMP SPDs
throughout facilities or
buildings; no shielded
rooms are required (but
recommended)

Level 4
Use EMP
capable surge
protector strips (<
1 nanosecond
response time)
on power cords
for essential
equipment; use
EMP SPDs
throughout
facilities or
buildings; use
EMP sparkffire
suppressors in
buildings, use
clamp-on ferrites
for protection on
data cables and
power cords; no
shielded rooms
are required (but
recommended)

\uuu
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Homeland
Security

Source:

11 May 2015

Electromagnetic Pulse (EMP) Protection Guidelines for Equipment,
Facilities and Data Centers, Version 6.0, DHS
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Overall EMP Mitigation Conclusions

» The risk of not protecting critical infrastructures is profound

» One HEMP burst can disrupt infrastructures across the continental USA

» One SREMP burst can disrupt infrastructures within a 100 mile area

» EMP protection can be relatively low-cost for new equipment

> 1% — 5% for terrestrial equipment/installations (more %S for satellites)

» EMP retrofit can be economical for surge protecting power/comms “tails”

» EMP protection guidance is needed for more than just HEMP

» Need massively scalable, cost-effective EMP mitigation programs
to protect critical infrastructures

UNCLASSIFIED
28 May 2015 — Kevin Briggs 41




Solar Superstorm Risks
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Answer: Explosmns at the sun.[93 m|II|on miles away] ! . -
- 1. Solar flares [photons arrive at earth Wlthln about =2 8 mlnutes]
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Coronal Mass Ejections and the Earth
The biggest natural risk we face?

® —— Approx. size of Earth

Image from the Solar and Heliospheric Observatory (SOHO) satellite shows an
erupting coronal mass ejection, with an Earth inset at the approximate scale of the
image. Credit: NASA www.nasa.gov/vision/universe/solarsystem/perfect_space_storm.html
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Solar Superstorms: Why worry?

Dr. Holdren’s Concerns

Celestial Storm Warnings, NY Times, published on 10 March 2011

By JOHN P. HOLDREN and JOHN BEDDINGTON
John P. Holdren is the Science and Technology Adviser to President Obama
John Beddington was the Chief Scientific Adviser to Prime Minister Cameron

“... From sporadic solar flares to ethereal shimmering aurora, manifestations of severe space
weather have the power to adversely affect the integrity of the world’s power grids, the accuracy
and availability of GPS, the reliability of satellite-delivered telecommunications and the utility of
radio and over-the-horizon radar.”

“Space weather can affect human safety and economies anywhere on our vast wired planet, and
blasts of electrically-charged gas traveling from the Sun at up to five million miles an hour can strike
with little warning. Their impact could be big — on the order of $2 trillion during the first year in
the United States alone, with a recovery period of 4 to 10 years.”

In 1921, space weather wiped out communications and generated fires in the northeastern
United States. In March 1989, a geomagnetic storm caused Canada’s Hydro-Quebec power grid to
collapse within 90 seconds, leaving millions of people in darkness for up to nine hours. In 2003,
two intense storms traveled from the Sun to Earth in just 19 hours, causing a blackout in Sweden
and affecting satellites, broadcast communications, airlines and navigation.

5/11/2015 Kevin Briggs Bolding of text was not in the original. 45




Coronal Mass Ejections (CMEs)

As seen on the earth as auroras

“Auroras are much more than just pretty lights in the sky. Underlying each display is a
potent geomagnetic storm with possible side-effects ranging from satellite malfunctions in
orbit to power outages on terra firma.” — Tony Phillips, NASA

(from: www.nasa.gov/centers/goddard/news/topstory/2008/aurora_live.html)

An aurorain Alaska - An aurorain Plymouth, OH

Credit: Jan Curtis of the Geophysical Institute at the University Credit: Terry Lutz

of Alaska '

from: www.nasa.gov/centers/goddard/news/topstory/2008/aurora_live.html from www.nasa.gov/images/content/119657main_aurora_lg.jpg
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Why should we be concerned about

Solar Superstorms?

— Many experts believe it is highly likely that a Solar Superstorm could damage our
power grid and leave much of the U.S. without power for days to years

— The power industry has only a very limited capability to protect the grid from solar
superstorms (or from a related phenomena, electromagnetic pulse (EMP) attacks)

— Without power, all other infrastructures, like communications, quickly degrade/fail
— A black start of large portions of the US power grid may be required. Not easy.

— Without communications for the grid operators and SCADA*/control nets,
restarting grid regions may be very difficult ... need resilient communications

— Some key equipment needed to fix the grid, such as large generator step-up
(GSU) transformers, are in short supply, require a long time to install, and may
take well over a year to be delivered (especially if manufactured overseas)

— Long-term power outages could lead to a great loss of life due to a lack of food,
water, and essential services

* SCADA = Supervisory Control and Data Acquisition
5/11/2015 Kevin Briggs 47




Sunspots count in blue

Cycle 17 Cycle 18 Cycle 19 Cycle 20 Cycle 21 Cycle 22 Cycle 23

350 250
Large Geomagnetic Storms
300 -
A Sunspot Cycle - 200
— JI
> 250 | A
= [
o / ) 1150 E
< 200 | m 1 8
2 | \ | o
2 |[L\" I- ‘ IJPHJ"] 8_
S 150 + I ' r 7]
£ | | [ " | | 1'1 -+ 100 ug)
| ( 1
£ 1 | | L H \
S 100 4 CB Il . o
w | | |. |
- \ ) + 50
50 4 [ |/ \
[ L\ |I b le H\_ H_|' \\W
/ |
j \Vr L/ \.H
0 :: e u e 0
1930 1940 1950 1960 1990 2000
Year Superstorms sometimes occur
5/11/2015 Kevin Briggs when sunspot CyCIe Is at a low 48




Near Miss: The Solar Superstorm

of July 2012 and Storm Probabilities

* From a 2014 NASA article: “If an asteroid big enough to knock modern
civilization back to the 18th century appeared out of deep space and buzzed the
Earth-Moon system, the near-miss would be instant worldwide headline ...

— Two years ago, Earth experienced a close shave just as perilous, but most
newspapers didn't mention it. The "impactor"” was an extreme solar storm,
the most powerful in as much as 150+ years.

— "If it had hit, we would still be picking up the pieces," says Daniel Baker of the
University of Colorado.

— "In my view the July 2012 storm was in all respects at least as strong as the
1859 Carrington event," says Baker. "The only difference is, it missed.”

* In February 2014, physicist Pete Riley published a paper in Space Weather ... In it,
he analyzed records of solar storms going back 50+ years. By extrapolating the
frequency of ordinary storms to the extreme, he calculated the odds that a
Carrington-class storm would hit Earth in the next ten years. The answer: 12%”

http://science.nasa.gov/science-news/science-at-nasa/2014/23jul_superstorm/
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Solar Superstorm Probabilities/cont.

i VF%;:’
* Onein 100 year storms (~4,800+ nT/min level over the USA)*

— In the last 150+ years, only the 1859 and 1921 storms reached this level
— Later slides show the potential impact of a 4800 nT/min storm

* Onein 30 year storms (~2,400+ nT/min level over the USA)*
— 1972 solar storm was last storm to approach this level over the USA
— 1989 Hydro Quebec storm was at a lower level (max ~900 nT/min)

* Much smaller than a “30-year” level storm

* Transformers damaged: One at New Jersey’s Salem nuclear plant;
two La Grande 4 generating station step-up transformers in Canada

e Caused collapse of Quebec’s power grid for over 9 hours

Bottom line: Many experts believe we are due for a damaging,
possibly catastrophic storm.

5/11/2015 Kevin Briggs * From Ref 2, page 3-13, see Backup Slide 50



Systems that can be impacted by
Solar Storms
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Space Weather Scales

http://www.swpc.noaa.gov/NOAAscales/
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Examples of historical Solar Storm

damag tO infrastructure

— Satellites [R1 and discussions with NOAA and other NASA and many news sources]
* 1994: Anik E1 & E2 damaged (TV and data services lost to 1600 communities)
e 1997: S200M Telstar 401 satellite failed during solar storm
* 1998: PanAmSat's Galaxy IV satellite (disrupted pager service across USA)
e 2003: Extensive satellite upsets (e.g. SOHO) and damage (ACE) due to storm
e 2012: SkyTerra 1 (weeks of outage) and Spaceway 3 (restored next day)

— Power grid (especially Extra High Voltage (EHV) transformers) [r1/2/9]
e 1958 & 1972: Transformer failures at British Columbia Hydro & Power Authority
e 1989: Hydro Quebec power failure; Salem NJ nuclear plant transformers failed
e 2003: 14 transformers damaged in South Africa [R1 and R2, page 3-25]

— Long communications lines (r1/2/5/]
e 1859, 1882, 1909, 1921, 1926: Telegraph fires/shocks
* 1940 & 1958: Landline / undersea lines disrupted
* 1972: US and Canada’s telephone system disrupted

Damaged Salem NJ nuclear plant

t ran Sfo r m er http://science.nasa.gov/headlines/y2008/06may_carringtonflare.htm ] - :
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Global Suppliers of Large Power

Transformers to the USA from 2011 - 13

~ Mexico

GE/Prolec B_,r?/fu
Industrias IEM

Siemens A_BB
WEG Siemens

Note: Over 80% of new
transformers for USA
were purchased from
foreign sources in 2010.

11 May 2015 — Kevin Briggs

Austria

. EZZ3y South Korea
Germany — i 289

- Smit

Annual Average LPT Imports, 2011-2013:
491 Units or $735 Million

Note: This analysis includes LPTs with capacity
greater than or equal to 100 MVA.
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CG, Canada ABB, Canada
8 Large Power Transformer Winsineg: Manikiba Varmnes. Biehes
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Solar Superstorms & IEEE Survey’s

Transformer Failures — 1989 - 1991

l Transformer Failure Trendline
Based on IEEE GSU Transformer Failure Survey (Post March 1989 Storm)

35 -

1989-1991 IEEE Graph shows that 36 large Generator
ya Survey of GSU Step-Up (GSU) transformers were
Transformer Failures reported in IEEE survey that failed during
or shortly after 1989 solar superstorm

30 -

25

Data Reported was
Voluntary and ~% of |
Utilities Participated

B Post 1989 Failures - IEEE Survey

20 -

15 -

10 -

All of these failures required the transformer to be replaced.
27% of all reported failures resulted in major fire events
with catastrophic or major collateral damage due to fires,
tank rupture and/or oil expulsion.

_ ' Source: Graphic adapted from “An Overview of Emerging Power Industry 58
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60 |

Reported to Nuclear

Graph shows that ~ 80 Generator Step-Up (GSU)

Regulatory Commission (NRC) | transformers were estimated to have failed during

but not in IEEE Survey

| (or shortly after) the 1989 solar superstorm

These are Licensee Event
Report’s (LER’s) that caused a

reactor scram event. B NRC Reported Failures - no in IEEE Survey

Estimated Non IEEEE Survey Reported

N

N

M Post 1989 Failures - IEEE Survey

Some experts
believe that a 30 to
100 year level solar
storm could readily
exceed ~300 failed

GSU transformers
alone
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Source: Graphic
adapted from
“An Overview of
Emerging Power
Industry
Standards for
Geomagnetic
Storms” by John
Kappenman
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FEMA 2008 Scenario Results (part 1)

presented at National Academies Workshop, 23 May 08

Cascading effects
could potentially
cause outages across
major portions of the
US power grid and
could necessitate a
Black Start of the grid.

Areas of probable
immediate power
system collapse

100 Year Geomagnetic Storm — 50 Degree Geomagnetic Disturbance Scenario
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FEMA Solar Superstorm Study Results
Grid Transformer Damage (45°N scenario)

Cascading effects
could potentially

major portions of
the US power grid

Areas of probable
immediate power
system collapse

and could

Start of the grid.

5/11/2015

Figure 3-20.

K. Briggs

cause outages across

necessitate a Black

100 Year geomagnetic storm — 45 degree geomagnetic disturbance scenario. The above regions outlined
are suscepiible to system collapse due to the effects of the GIC disturbance.

From: “An Assessment of the Threat Potential to the US Electric Power Grids from Extreme Space Weather Storms
— Analysis of US Power System Impacts from Large Geomagnetic Storm Events” by John Kappenman and Peter
Warner, Metatech Corporation, in support of a FEMA sponsored contract with Cubic Applications, Inc., 1 Oct 2007
(Meta-R-295) [R2]
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FEMA Solar Superstorm Study Results

for Grid Transformer Damage (50°N scenarios)

If transformers fail at GIC over 90A:
~640 Transformers Damaged

If transformers fail at GIC over 30A:

~1,000 Transformers Damaged

US Grid Map with Effective GIC Over 30A

US Grid Map with Effective GIC Over 90A
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From: “Economic Analysis of a Major Geomagnetic Storm on the United
States” — Briefing provided by Cubic Applications, Inc., 8 February 2008 [R4]
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Communications Dependencies on

Commercial Power

. Wireless
— Cell sites have 4 to 8 hours of backup power. Some cell sites have access to
generators, including key cell towers & cells on roofs of buildings with generators
— Mobile Switching Centers (MSCs) typically have up to 72 hours of backup power

— Both MSCs and cell sites with diesel generators will have power for as long as fuel
can be delivered to the facilities

* Wireline / Cable

— Typical Central Offices have up to 72 hours of backup power on site and
generators that can maintain operations for as long as fuel can be delivered

— Remotes have up to 8 hours of on site backup power; some have generators

— Plain telephone handsets can be powered directly from the Central Office

— Most telephones use commercial power to operate (with limited battery backup)

— Cable —based voice equipment typically has from 4 to 12 hours of backup power
* Emergency Alert System (EAS) Primary Entry Point (PEP) Radio Stations

— 30+ days of on-site fuel and good radio coverage over most of the US population
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Warning of Extreme Solar Events

Lessons from the 2015 St. Patrick’s Day Storm

 Background from NASA

— On Sunday, March 15, a coronal mass ejection exploded off the Sun towards Earth, as
observed by NASA and National Oceanic and Atmospheric Administration (NOAA)
instruments. By March 17, the burst of solar particles and energy reached Earth and
kept the solar wind stream at potent levels for more than 24 hours. The storm
reached a G4 or “severe” level on NOAA’s geomagnetic storm scale, and the Kp
index—a metric for global geomagnetic storm activity—fluctuated between 6 to 8 on
a scale that goes to 9. The “northern lights” reached as far south as the central and
southern United States.

* Lessons from Event
— NOAA predicted a G1 level storm ... but storm surprised forecasters ... went to a G4
— Arrived ~ 7 hours earlier than expected
— NOAA emphasized to DHS that they cannot reliably predict CME arrival time & levels
— Some power companies didn’t realize there was a G4 storm until DHS told them

— We should not trust that power companies will have adequate warning to react to
any geomagnetic storm and hence have time to enact grid protection procedures
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Solar Superstorms vs Other Risks

[note: ranking is arbitrary within each cell]

Level 1 - Extreme
- $ Trillion(s) lost

- Extreme pandemic
(<< 1%)

- Extreme volcanic
(Yellowstone, etc. << 1%)

- Extreme meteor (<< 1%)

6. Solar Superstorm (100
year level: 4800+ nT/min)
(since 1921 storm, > 58%)

7. Simultaneous nuclear
detonations in = 2 cities

8. Regional HEMP* attack

via nation-state or
state supported terrorists

1. Solar Superstorm (30
year level: 2400 nT/min)
(since 1972 storm, >70%)

2. Extreme cyber attack
3. CONUS HEMP* attack
4. Extreme biological attack

5. Nuclear detonation in one
large US city

Level 2 - Major to

- 7.6 + New Madrid
earthquake (~10%)

- Severe volcanic event
like Mount St. Helens
near population center
(includes lahars, etc.)

- Major pandemic (~ 1%)

15. Nuclear terrorism - 10kT
Improvised Nuclear Device

16. Nation-state sponsored
cyber terrorist attack

17. 6.3 NMSZ* quake (> 63%)
18. Tactical RF* Weapons

19. Bombs (thermobaric, etc.)
20. Internet & EAS* disruptions

9. Floods/Tsunamis (>99%)
10. Severe hurricane (>99%)
11. Major cyber attack

12. Major CA earthquake in
LA or Bay Area (~88%)

13. Severe biological attack

14. Low yield nuclear attack on
key city (10 KT or less)

For natural disasters:
< 50% chance in 30 years

For natural disasters:
50% - 70% chance in 30 years

For natural disasters:
> 70% chance in next 30 years

For manmade disasters:
Near-term capability: nations
or state-supported terrorists

For manmade disasters:
Current capability for nations
or state-supported terrorists

Severe
- $ Millions to Billion(s)
lost
t 1. Likely?
Impact (Natural
Or
Scale 2. Capable?
(Manmade)
5/11/2015 Kevin Briggs
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What can be done? (part1)

——_

* Need communications, security, transportation, & supplies to restore power
— Need backup fuel and generators that support communications for 30+ days

* Ensure backup generators can support both communications equipment and
supporting equipment, like heating and cooling

* If do not store fuel on site or have renewable power (for example, wind or solar),
must ensure external fuel suppliers can pump fuel without commercial power for

weeks or months

— Restoration will likely require communications that don’t rely on the commercial
Internet and phone networks

* HF long-range voice and data communications may prove key to restoration

— Resilient voice and data networks like SHARES may prove key to restoring essential services/power
* UHF/VHF Land Mobile Radio (LMR) important for local communications

* Public switched voice (both landline and cellular) & Internet likely to be disrupted

— Priority services like GETS, WPS, and TSP may prove key for using limited voice and data services

 Satellites may be significantly disabled/damaged due to solar superstorm effects
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What can be done? (part2)

* Need to protect key power grid elements in USA and Canada
— Over 2,000 Extra High Voltage (EHV) Transformers
— Tens of thousands of other Large Power Transformers (over 100 MVAs)
— About 6,000 power plants (100 nuclear reactors and large hydro plants are key)
— About 50,000 electric substations in the USA

— Experts have recommended protecting neutrals in LPTs from GICs

* Large resisters in neutrals could work but may increase problem for non-
protected equipment and resisters don’t effectively mitigate harmonics

* Capacitors in the neutrals can protect equipment from both GICs and harmonics
(appears to be a better solution than resisters)

* Neutral disconnect switch during times of major storm (but leaves LPTs
vulnerable to ground faults)

* One hybrid solution, the Emprimus SolidGround™ neutral DC blocking system,
has been tested and proved to be effective by the U.S. government
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What can be done? (part 3)

* Risk and costs to mitigate (Preliminary estimate. For some alternate estimates,
see www.resilientsocieties.org/economicsofresiliency.html )

Worst-case ratio of | Total # of U.S. Loss in SUSD based Scenario: Weather
deaths in USA if 100 year| deaths due to | Economic life | solely on number of | Season when storm
level solar superstorm solar storm |value in $ USD deaths in USA strikes
1 out of 1,000 die 318,900 | S 7,000,000 | S 2,232,300,000,000 Spring and Fall
1 out of 100 die 3,000,000 | S 7,000,000 | S 21,000,000,000,000 Summer
1 out of 10 die 30,000,000 | S 7,000,000 | S 210,000,000,000,000 Winter
Total Cost to Protect
Key elements to protect the U.S. grid Number |Cost to protect (in SUSD)
Top 2,000 EHV transformers 2,000 S 350,000 S 700,000,000
Top 20,000 substations 20,000 S 400,000 S 8,000,000,000
100 nuclear reactor sites 100 S 1,000,000 S 100,000,000
Top 650 largest hydro plants 650 S 1,000,000 S 650,000,000
HF & satellite voice/email between key sites 3,000 S 50,000 S 150,000,000
Federal, state, & local grid protection grants S 400,000,000
Total $ 10,000,000,000
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~ Intentional
Electromagnetic
Interference
(IEMI) and
Radio Frequency
(RF) Weapons

[Graphic source: IEEE
Spectrum Sep 20141



Worldwide Scientific Activity in IEMI

* URSI published a resolution in 1999 dealing with the criminal activities of EM
“tools” and the need to protect against the threat

* The International Electrotechnical Commission (IEC) SC77C (EMC: High Power
Transient Phenomena) is writing standards to deal with this problem in
general (new project on IEMI immunity tests)

* |TU-T has developed a recommendation on dealing with HPEM threats (IEMI)
on telecommunications systems (K.81: Nov. 2009)

e The IEEE EMC Society published a special issue on IEMI in August 2004 and is

working on a standard to protect publicly accessible computers from IEMI
(P1642)

* Many EMC and HPEM Conferences are dealing with IEMI (~ 3 per year)

* Private companies are developing methods of threat assessments, protection
methods, and monitors

* Fear of Frying: IEEE Spectrum, Sep 2014
[Source: Adapted from Metatech briefing for DHS]



Briefcase Mesoband Generator

e Diehl Munitions Systeme has developed
a small interference source (including
antenna)

— 350 MHz damped sine field

— 120 kV/m at 1 meter (omni-directional
antenna)

— Modified versions produce higher
directional outputs

— 30 minute continuous operation
(5 pulses per second) or 3 hours in
bursts

— 20x 16 x 8 inches and 62 pounds

 Demonstration in Summer 2004 and
new version is 4 times more powerful

[Source: Metatech briefing for DHS]



AFRL (U.S.) has
developed an
extremely powerful
IRA system that
produces hyperband
pulses
— E*r=5.3 MV
— pulse width

~1ns

[Source: Metatech briefing for DHS]



Internal Voltage Level Examples

Induced Peak Voltages for Measurement Sites

Parameters Peak Cable Voltage, kV
Location Shld|Cbl| R Worst ((ii;; Cable Average Cable (50%)
0
o TEMI IEMI

Site Room dB | m | m |HEMP Severe | Moderate HEMP Severe | Moderate

Comm [ 20| 3 [110] 1490|9841 9.84 9.0 |25.87| 2.59

110 795 | 432 | 043 480 [ 2.00 | 0.20

Substation 345 kV 30 3
Relay 2551 2.51 1.37 | 0.14 1.52 | 0.63 0.06

161kv | 25| 3 [130] 2.51 [ 0.59 | 0.06 | 1.52 | 0.27 | 0.03
Comm |20 3 [10] 447 [206] 021 | 270 095 0.10
%‘;‘;‘l;"r‘ Control | 20 | 10|30 | 7.95 |47.55| 4.76 | 4.80 [22.05| 2.21

EMS | 15| 3 [ 10]26.50(29.17] 2.92 |16.00| 7.67 | 0.77
5 [ 14.14 [ 84.56| 8.46 | 8.54 |39.21| 3.92
20 | 4.47 [53.48] 5.35 | 2.70 [24.80] 2.48

Control | 25| 3

Generator 10 | 4.47 |13.37| 134 | 2.70 | 6.20 | 0.62
Back-Up | 1 20 1 10
[Source: 5 20 [ 26.50 | 87.50| 8.75 |16.0023.00| 2.30
5 ower _
Facility |Generator | 5 [ 1o [ 10 ]26:50 |43.75] 4.38 | 1600 | 11.50] 115
M_Ete_‘tECh : 30 [ 14.90 [49.20] 4.92 | 9.00 [12.93] 1.29
briefing for Generator 10 | 14.90 | 16.40| 1.64 | 9.00 | 4.31 | 0.43

15 | 10
DHS] 3 20 | 14.90 [49.20[ 4.92 | 9.00 {12.93| 1.29




